【数论】8.30题解-prime素数密度 洛谷p1835
prime
题目描述
给定区间[L, R](L <= R <= 2147483647, R-L <= 1000000),请计算区间中
素数的个数。
输入输出
输入
两个数 L 和 R。
输出
一行,区间中素数的个数。
样例
样例输入
2 11
样例输出
5
说明
时空限制
时间限制 1s/testcase
空间限制 32MB
思路
R-L<=1000000
L <= R <= 2147483647
时间上用质数筛能过
求出2~45000的所有质数(sqrt(2147483647)大约是4300+)
然后将所有是这些质数的倍数的数删掉,剩下的就是质数
空间上只有32mb,数组不能开太大,考虑到R-L<=1000000
完全可以只开到100005,之后对于大于100000的L和R,在存质数时
减去L即可。
代码
/*
b[i]==1 i不是质数
b[i]==0 i是质数
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int i,j,k,l,t,n,m,ans;
int zhi[100005];
bool b[100005],z[1000005];
inline int read() {
int x=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') w=-1,ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-48,ch=getchar();
return x*w;
}
int main() {
freopen("prime.in","r",stdin);
freopen("prime.out","w",stdout);
for(i=2; i<=sqrt(100000); i++) {
if(!b[i]) {
for(j=2; j<=100000/i; j++) {
b[i*j]=1;
}
}
}
for(i=2; i<=100000; i++)if(!b[i])zhi[++zhi[0]]=i;
n=read();
m=read();
for(i=1; i<=zhi[0]; i++) {
for(j=max(n/zhi[i],1); j<=m/zhi[i]; j++) {
if(j==1)continue;
if(j*zhi[i]<n)continue;
z[zhi[i]*j-n]=1; //平移数组,控制空间大小
}
}
for(i=n-n; i<=m-n; i++) {
if(!z[i])++ans;
}
printf("%d\n",ans);
return 0;
}
【数论】8.30题解-prime素数密度 洛谷p1835的更多相关文章
- 【题解】魔板—洛谷P1275。
话说好久没更博了. 最近学了好多知识懒的加进来了. 有幸认识一位大佬. 让我有了继续更博的兴趣. 但这是一个旧的题解. 我在某谷上早就发过的. 拿过来直接用就当回归了吧. 其实这道题有一个特别关键的思 ...
- 洛谷 P1835 素数密度
https://www.luogu.org/problemnew/show/P1835 对于40%,对每个数进行最大$O(\sqrt n)$的判断,因为n比较大所以超时. 想到线性筛,然而我们并不能筛 ...
- [洛谷P1835]素数密度
题目大意:求区间[l,r]中素数的个数($1\leq l,r\le 2^{31}$,$r-l\leq 10^6$). 解题思路:首先,用筛法筛出$2~\sqrt{r}$内的素数. 然后用这些素数筛l~ ...
- 【洛谷P1835】素数密度
题目描述: 给定区间[L,R](L≤R≤2147483647,R-L≤1000000),请计算区间中素数的个数. 思路: 暴力: 蒟蒻:哦?绿题?这么水?(便打出下面代码) 这绝对是最容易想到的!但, ...
- 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)
先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...
- 洛谷 P1013 进制位 【搜索 + 进制运算】
题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: + L K V E L L K V E K K V E KL V V E KL KK E E ...
- 【洛谷 5002】专心OI - 找祖先 (树上计数)
专心OI - 找祖先 题目背景 \(Imakf\)是一个小蒟蒻,他最近刚学了\(LCA\),他在手机\(APP\)里看到一个游戏也叫做\(LCA\)就下载了下来. 题目描述 这个游戏会给出你一棵树,这 ...
- 【贪心】洛谷2019 OI春令营 - 普及组 作业
[P3817 小A的糖果 小A有N个糖果盒,第i个盒中有a[i]颗糖果. 小A每次可以从其中一盒糖果中吃掉一颗,他想知道,要让任意两个相邻的盒子中加起来都只有x颗或以下的糖果,至少得吃掉几颗糖. [贪 ...
- 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)
洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式 ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...
随机推荐
- 『政善治』Postman工具 — 10、Postman中对Cookie的操作
目录 1.往常的Cookie处理方式 2.Postman中的Cookie管理机制 3.自定义Cookie管理内容 在接口测试中,某些接口的调用,需要带入已有Cookie,比如有些接口需要登陆后才能访问 ...
- JUC 并发类概览
JUC 并发类及并发相关类概览,持续补充... AQS 内部有两个队列,一个等待队列(前后节点),一个条件队列(后继节点),其实是通过链表方式实现: 等待队列是双向链表:条件队列是单向链表:条件队列如 ...
- Java学习之jackson篇
Java学习之jackson篇 0x00 前言 本篇内容比较简单,简单记录. 0x01 Json 概述 概述:JSON(JavaScript Object Notation, JS 对象简谱) 是一种 ...
- C++ primer plus读书笔记——第16章 string类和标准模板库
第16章 string类和标准模板库 1. string容易被忽略的构造函数: string(size_type n, char c)长度为n,每个字母都为c string(const string ...
- volatile关键字的作用-respect
volatile关键字的含义? volatile定义的变量可能会意外的改变,改变它的情况有很多(例如:操作系统,硬件,线程),编译就不会去假设这个值,也就是说每次访问这个变量时,系统就会小心翼翼的去从 ...
- git合并代码到主分支
git合并login分支到master分支 1.首先查看源码状态 git status 2.添加到暂存区 git add . git status //添加到暂存区后再次查看源码状态 3.提交代码到本 ...
- [Java] 数据分析 -- 大数据
单词计数 需求:输入小说文本,输出每个单词出现的次数 实现:分map.combine.reduce三个阶段实现 1 /* Data Analysis with Java 2 * John R. Hub ...
- [bug] IDEA 右侧模块灰色
参考 https://blog.csdn.net/weixin_44188501/article/details/104717177
- Kibana常用语法
GET brand201811_v2/_search 方法一:查询数据源,及相关url的文章 { "query": { "bool": { "must ...
- linux使用createrepo制作本地yum源
目录 linux使用createrepo制作本地yum源 安装createrepo软件包 进入本地rpm包目录 执行完后可以看到生成的repodata目录 编辑yum配置文件使用 完成,测试使用 关于 ...