Content

给定 \(n\) 个整数 \(1,2,\dots,n\),请问是否能从这 \(n\) 个数中恰好选 \(k\) 个数,使得这 \(k\) 个数的和为 \(s\)。

数据范围:\(t\) 组数据,\(1\leqslant t\leqslant 10^3\),\(1\leqslant k\leqslant n\leqslant 10^9\),\(1\leqslant s\leqslant 10^{18}\)。

Solution

我们都知道,从 \(1\) 到 \(n\) 中选出 \(k\) 个数,最小和是 \(1\sim k\) 的和,最大和是 \(n-k+1\sim n\) 的和,而在此之间的所有的整数和都能够通过最小和和最大和当中的某些数进行加减得到,比如说 \(1\sim 5\) 中选出 \(3\) 个数,最小和是 \(6\),最大和是 \(12\),那么可以构造出如下的整数和的方案:

  • 选出的数的集合为 \(\{1,2,3\}\),总和为 \(6\)。
  • 选出的数的集合为 \(\{1,2,4\}\),总和为 \(7\)。
  • 选出的数的集合为 \(\{1,2,5\}\),总和为 \(8\)。
  • 选出的数的集合为 \(\{1,3,5\}\),总和为 \(9\)。
  • 选出的数的集合为 \(\{1,4,5\}\),总和为 \(10\)。
  • 选出的数的集合为 \(\{2,4,5\}\),总和为 \(11\)。
  • 选出的数的集合为 \(\{3,4,5\}\),总和为 \(12\)。

其实这也给出了一种构造出从 \(1\) 到 \(n\) 中选出 \(k\) 个数和为 \(s\) 的一种方案:

  • 首先,先选出 \(1\sim k\)。
  • 然后,从最后一个数(第 \(k\) 个数)开始往前推,如果当前到了第 \(i\) 个数,直接加到 \(n-k+i\),再根据是否超过了 \(s\) 进行判断。如果当前和 \(\geqslant s\),那么将当前数减回去到刚好使和等于 \(s\),否则继续往前推。
  • 依此下去,就能够构造出一种满足题目要求的方案。

因此我们先算出 \(s_{\min}=\sum\limits_{i=1}^k i=\dfrac{k(k+1)}2\) 和 \(s_{\max}=\sum\limits_{i=1}^kn-k+i=\dfrac{(2n-k+1)k}2\),然后再拿 \(s_{\min},s_{\max}\) 与 \(s\) 进行比较。如果 \(s_{\min}\leqslant s\leqslant s_{\max}\),那么显然能够恰好选出和为 \(s\) 的 \(k\) 个数,否则就不行。

Code

  1. int main() {
  2. MT {
  3. ll n = Rll, k = Rll, s = Rll;
  4. ((2 * n - k + 1) * k / 2 < s || (1 + k) * k / 2 > s) ? No : Yes;
  5. }
  6. return 0;
  7. }

LuoguP7593 凑数 题解的更多相关文章

  1. P2188 小Z的 k 紧凑数 题解(数位DP)

    题目链接 小Z的 k 紧凑数 解题思路 数位DP,把每一个数位的每一个数对应的可能性表示出来,然后求\(num(1,r)-num(1,l-1)\),其中\(num(i,j)\)表示\([i,j]\)区 ...

  2. NOIP 2008提高组第三题题解by rLq

    啊啊啊啊啊啊今天已经星期三了吗 那么,来一波题解吧 本题地址http://www.luogu.org/problem/show?pid=1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们 ...

  3. BestCoder Round #60 题解链接

    题解  题目 1001 GT and sequence 注意先特判000的情况:如果读入的数据有000,那么去掉所有的000且最后答案和000取一个max. 剩下的正数显然全部乘起来比较优. 对于负数 ...

  4. 2018 ACM-ICPC Asia Beijing Regional Contest (部分题解)

    摘要 本文主要给出了2018 ACM-ICPC Asia Beijing Regional Contest的部分题解,意即熟悉区域赛题型,保持比赛感觉. Jin Yong’s Wukong Ranki ...

  5. 51nod 1577 异或凑数

    思路真的是挺巧妙的. 让我惊叹,原来线性基还能这么做?!?! 好吧,这种取若干个数异或凑数的题目怎么能少的了线性基呢? 但是,问题集中在于怎么快速提取一个区间的线性基 暴力n^2 线段树维护线性基?分 ...

  6. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  7. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  8. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  9. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

随机推荐

  1. 打开order by的大门,一探究竟《死磕MySQL系列 十二》

    在日常开发工作中,你一定会经常遇到要根据指定字段进行排序的需求. 这时,你的SQL语句类似这样. select id,phone,code from evt_sms where phone like  ...

  2. BJ2 斜率限制器

    BJ2 斜率限制器 本文介绍斜率限制器取自于 Anastasiou 与 Chan (1997)[1]研究,其所利用的斜率限制器也是 Barth 与 Jespersen 限制器的一种修正形式,并且包含一 ...

  3. EXCEL-批量下拉填充

    3.批量下拉填充  =>    全选->Ctrl+G定位空值->随意找一个空白单元格输入=还有此单元格想要填充的内容->按Ctrl+Enter,等待几秒,即可,批量下拉填充:

  4. day02 Rsyuc备份服务器

    day02 Rsyuc备份服务器 一.备份 1.什么是备份 备份就是把重要的数据或者文件复制一份保存到另一个地方,实现不同主机之间的数据同步 一般数据比较重要的情况下,数据如果丢失很容易找不回来了的, ...

  5. Linux的小知识

    1. top 命令可以在Linux下查看任务管理器和当前进程使用资源情况. 2. Ctrl+c 即可退出,然后使用 kill+进程号 命令可杀死指定进程 3.在Linux的 /etc/rc.local ...

  6. 【STM32】使用SDIO进行SD卡读写,包含文件管理FatFs(五)-文件管理初步介绍

    其他链接 [STM32]使用SDIO进行SD卡读写,包含文件管理FatFs(一)-初步认识SD卡 [STM32]使用SDIO进行SD卡读写,包含文件管理FatFs(二)-了解SD总线,命令的相关介绍 ...

  7. Linux磁盘分区(三)之查看磁盘分区常用命令

    Linux磁盘分区(三)之查看磁盘分区常用命令转自https://blog.csdn.net/x356982611/article/details/77893264 1.df     df -T 总的 ...

  8. 双向链表——Java实现

    双向链表 链表是是一种重要的数据结构,有单链表和双向链表之分:本文我将重点阐述不带头结点的双向链表: 不带头结点的带链表 我将对双链表的增加和删除元素操作进行如下解析 1.增加元素(采用尾插法) (1 ...

  9. Vue API 3模板语法 ,指令

    条件# v-if# v-if 指令用于条件性地渲染一块内容.这块内容只会在指令的表达式返回 truthy 值的时候被渲染. v-show# v-show 指令也是用于根据条件展示一块内容.v-show ...

  10. JavaEE复习三

    Http协议是基于请求/响应模式.无状态的协议:所有请求时相互独立的.无连续的:服务器无法记住与识别用户. 对于简单的页面浏览或信息获取,http协议可以完全胜任:对于需要提供客户端和服务器端交互的网 ...