这题直接换根dp 记录在要转移的点的子树中有多少牛

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define C getchar()-48
inline ll read()
{
ll s=0,r=1;
char c=C;
for(;c<0||c>9;c=C) if(c==-3) r=-1;
for(;c>=0&&c<=9;c=C) s=(s<<3)+(s<<1)+c;
return s*r;
}
const ll N=1e5+10,inf=1e18;
ll n,ans,mn=inf,zg;
ll c[N];
ll sz[N];
ll link[N],e[N<<1],nxt[N<<1],v[N<<1],top;
inline void llo(ll xx,ll yy,ll vv)
{
e[++top]=yy,nxt[top]=link[xx],link[xx]=top,v[top]=vv;
}
inline void dfs(ll x,ll fa,ll deep)
{
sz[x]=c[x];ans+=c[x]*deep;
for(ll i=link[x];i;i=nxt[i])
{
ll u=e[i];
if(u==fa) continue;
dfs(u,x,deep+v[i]);
sz[x]+=sz[u];
}
}
inline void dfs2(ll x,ll fa,ll ans)
{
mn=min(mn,ans);
for(ll i=link[x];i;i=nxt[i])
{
ll u=e[i];
if(u==fa) continue;
dfs2(u,x,(ans+(zg-sz[u])*v[i]-(sz[u])*v[i]));
}
}
int main()
{
freopen("gather.in","r",stdin);
freopen("gather.out","w",stdout);
n=read();
for(ll i=1;i<=n;i++) c[i]=read(),zg+=c[i];
for(ll i=1;i<n;i++)
{
ll x=read(),y=read(),v=read();
llo(x,y,v);llo(y,x,v);
}
dfs(1,0,0);
dfs2(1,0,ans);
cout<<mn;
return 0;
}

【简】题解 AWSL090429 【聚会】的更多相关文章

  1. 【简】题解 AWSL090429 【市场】

    因为这有个时间的限制 并且  求的时间都是前缀和 那么 我们可以根据时间将排序 因为题中没有修改可以直接用背包预处理出答案 但是因为题目ci mi<=1e9   vi<=300 所以发现不 ...

  2. 【简】题解 AWSL090429 【噪音】

    因为每次加上一头奶牛 是什么不重要 牛棚之间贡献除清空操作外无影响 就只要考虑 每个牛棚清空分x次 的贡献 x之和为k       求贡献和最小 一个牛棚清空x次 显然平均清空贡献最小 再用等差数列的 ...

  3. 【简】题解 AWSL090429 【数塔问题】

    因为每次只ban一个点 而且不是永久性的 预处理出每个点从上往下和从下往上的最大值 每次询问直接暴力 被ban掉点那行去掉那点的最大值 也可以直接预处理出每行的最大值和次大值 还有种做法貌似可以过 预 ...

  4. 【简】题解 AWSL090429 【原子】

    预处理出每个原子最近的不能合并的位置 枚举当前位置和前面断开的位置合并 发现还是不能过 考虑用选段树优化 但是因为每次转移的最优点是在前面可以合并的范围内 dp值加上当前的到该点的最大值 因为每个位置 ...

  5. 【简】题解 AWSL090429 【价值】

    先考虑当要选的物品一定时 显然有个贪心 wi越小的要越先选 所以先按wi从小到大拍序 因为发现正着递推要记录的状态很多 并且wi的贡献与后面选了几个物品有关 考虑正难则反 倒着递推 提前计算wi的贡献 ...

  6. DP笔记

    这是一篇蒟蒻被大佬踩爆后写的笔记 套路 0.贪心(废话)(排序...) 1.dp预处理出要用的东西 2.两头同时dp 3.化简题目中本质相同的东西 转化模型 4.数学计算优化 5.分析题目数据考虑该从 ...

  7. 【题解】Luogu P5361 [SDOI2019]热闹又尴尬的聚会

    原题传送门 构造题. 明显p,q都越大越好 我们考虑每次取出度最小的点,加到尴尬聚会的集合中(因为把与它相邻的点全删了,不珂能出现认识的情况),把它自己和与自己相连的点从图上删掉(边也删掉),记下这个 ...

  8. 题解 BZOJ 1037 & Luogu P2592 [ZJOI2008]生日聚会

    BZOJ & Luogu 老师说是背包?并没看出来QAQ 设f[i][j][o][p]表示已经选了i个人,j个男生,男生比女生最多多o个,女生比男生最多多p个时的方案数 两种转移: <= ...

  9. 题解 [BZOJ1832][AHOI2008] 聚会

    题面 解析 首先对于其中的两个点\(x,y\)最近的点显然就是他们的\(lca\)(我们把它设为\(p1\)), 然后考虑第三个点\(z\)与\(p1\)的\(lca,p2\). 有以下几种情况: \ ...

随机推荐

  1. Part 29 AngularJS intellisense in visual studio

    In the previous videos if you have noticed as we were typing the angular code in Script.js file we w ...

  2. HCNP Routing&Switching之BGP团体属性和团体属性过滤器

    前文我们了解了BGP的路由过滤已经as-path过滤器的使用相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/15542559.html:今天我们来聊一聊 ...

  3. [bzoj3524]Couries

    首先用到bzoj2456的做法,因为要求这个数出现次数超过了一半,如果其与不同的数两两相消的话最终一定会剩下自身(如果不保证存在可能会剩下别的,但保证存在了只会剩下自身),然后再用可持久化线段树维护即 ...

  4. 洛谷 P4484 - [BJWC2018]最长上升子序列(状压 dp+打表)

    洛谷题面传送门 首先看到 LIS 我们可以想到它的 \(\infty\) 种求法(bushi),但是对于此题而言,既然题目出这样一个数据范围,硬要暴搜过去也不太现实,因此我们需想到用某种奇奇怪怪的方式 ...

  5. DP 优化方法大杂烩 & 做题记录 I.

    标 * 的是推荐阅读的部分 / 做的题目. 1. 动态 DP(DDP)算法简介 动态动态规划. 以 P4719 为例讲一讲 ddp: 1.1. 树剖解法 如果没有修改操作,那么可以设计出 DP 方案 ...

  6. FVCOM编译过程详解

    本文目的旨在介绍fvcom编译的全过程,顺便介绍linux中make命令的文件写法和一般的编程过程简述一下. 1.编程过程 编程,一般就是编写可执行程序过程.这个过程主要是源文件生成中间代码文件,再到 ...

  7. expr计算字符串长度

    命令:expr length "quanzhiqinag" #!/bin/bash for N in quan zhi qiang do if [ `expr length $N ...

  8. 【pheatmap热图scale报错】Error in hclust(d, method = method):NA/NaN/Inf in foreign function call (arg 11)

    初始数据类似如下: 填充下缺失值 data[data==0] <- NA data[is.na(data)] <- min(data,na.rm = T)*0.01 pheatmap(lo ...

  9. python 字典 key 对应多个 value

    基本思路是,将key对应的value设置为list,将对应的值append进去. 示例: f=open("a1.txt") ha={} for i in f: i=i.strip( ...

  10. CSS上下左右居中对齐

    上下左右居中对齐 display:  inline/inline-block 将父元素(容器)设定 text-align: center: 即可左右置中. display: block 将元素本身的 ...