python数据预处理和特性选择后列的映射
我们在用python进行机器学习建模时,首先需要对数据进行预处理然后进行特征工程,在这些过程中,数据的格式可能会发生变化,前几天我遇到过的问题就是:
对数据进行标准化、归一化、方差过滤的时候数据都从DataFrame格式变为了array格式。
这样数据的列名就会消失,且进行特征选择之后列的数量也会发生改变,因此需要重新对列进行映射,为其加上列名并转化为DataFrame的格式。一般情况下可以分为三种情况:
1、对数据进行缺失值填补、编码(处理分类型变量)、二值化(处理连续型变量)一般都是按照列对数据进行处理,因此处理完之后,直接覆盖原数据即可。
data.loc[:,"Age"]= SimpleImputer(strategy="median").fit_transform(data.loc[:,"Age"].values.reshape(-1,1))
2、对数据进行标准化、归一化都是对整个特征矩阵进行处理,数据类型变为array,但是数据的列并没有发生任何改变。直接将原始的列名重新映射至处理好的数据上。
X_train1 = min_max_scaler.fit_transform(X_train)
X_train1=pd.DataFrame(X_train1)
X_train1.columns = X_train.columns
3、在所有特征选择方法,方差,SelectKBest+各种统计量(卡方过滤、F检验、互信息法),嵌入法和包装法,都有接口get_support,该接口有参数indices,get_support(indices=False),参数为false的时候可以用来确定原特征矩阵中有哪些特征被选择出来,返回布尔值True或者False,如果设定indices=True,就可以确定被选择出来的特征在原特征矩阵中所在的位置的索引。
X_train_columns = X_train.columns
selector = VarianceThreshold(0.005071)
X_fsvar = selector.fit_transform(X_train)
X_fsvar.columns = X_train_columns[selector.get_support(indices=True)]
python数据预处理和特性选择后列的映射的更多相关文章
- Python数据预处理:机器学习、人工智能通用技术(1)
Python数据预处理:机器学习.人工智能通用技术 白宁超 2018年12月24日17:28:26 摘要:大数据技术与我们日常生活越来越紧密,要做大数据,首要解决数据问题.原始数据存在大量不完整.不 ...
- python数据预处理for knn
机器学习实战 一书中第20页数据预处理,从文本中解析数据的程序. import numpy as np def dataPreProcessing(fileName): with open(fileN ...
- Python数据预处理—归一化,标准化,正则化
关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的 ...
- python data analysis | python数据预处理(基于scikit-learn模块)
原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Fe ...
- Python数据预处理之清及
使用Pandas进行数据预处理 数据清洗中不是每一步都是必须的,按实际需求操作. 内容目录 1.数据的生成与导入 2.数据信息查看 2.1.查看整体数据信息 2.2.查看数据维度.列名称.数据格式 2 ...
- Python数据预处理(sklearn.preprocessing)—归一化(MinMaxScaler),标准化(StandardScaler),正则化(Normalizer, normalize)
关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常 ...
- Python数据预处理:使用Dask和Numba并行化加速
如果你善于使用Pandas变换数据.创建特征以及清洗数据等,那么你就能够轻松地使用Dask和Numba并行加速你的工作.单纯从速度上比较,Dask完胜Python,而Numba打败Dask,那么Num ...
- 关系网络数据可视化:2. Python数据预处理
将数据中导演与演员的关系整理出来,得到导演与演员的关系数据,并统计合作次数 import numpy as np import pandas as pd import matplotlib.pyplo ...
- Python数据预处理—训练集和测试集数据划分
使用sklearn中的函数可以很方便的将数据划分为trainset 和 testset 该函数为sklearn.cross_validation.train_test_split,用法如下: > ...
随机推荐
- 微信小程序(十)
时间机制- 响应用户交互 时间绑定 冒泡事件与非冒泡事件 bindtap 绑定 VS catchtap 绑定 button 不会阻止bindtap 向上冒泡,而如果是 catchtap 就会阻止向上冒 ...
- [atAGC050A]AtCoder Jumper
考虑二叉树的结构,但并不容易构造从叶子返回的边 (以下为了方便,将所有点编号为$[0,n)$) 对于$i$,选择$2i\ mod\ n$和$(2i+1)\ mod\ n$这两条出边 从二叉树的角度并不 ...
- [bzoj1105]石头花园
首先$C/2=x_{max}+y_{max}-x_{min}-y_{min}=max(x_{max},y_{max})-min(x_{min},y_{min})+min(x_{max},y_{max} ...
- javascript-初级-day03自定义属性
day01-自定义属性应用 <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type ...
- shiro 学习笔记
1. 权限管理 1.1 什么是权限管理? 权限管理实现对用户访问系统的控制,按照安全规则或者安全策略,可以控制用户只能访问自己被授权的资源 权限管理包括用户身份认证和授权两部分,简称认证授权 1.2 ...
- c++基础知识-数据类型
1.每次新建项都可需写内容 #include <iostream> using namespace std; int main() //main函数有且只有一个 { system(&quo ...
- 2017Java前景怎么样?
当今社会互联网软件行业属于高薪技术行业,伴随着互联网的发展Java在Web领域的优势也日渐凸显,并且java语言本身就应用最广泛,最高效.据说,全球有25亿Java器件运行着Java,450多万Jav ...
- 多线程Reactor模式
目录 1.1 主服务器 2.1 IO请求handler+线程池 3.1 客户端 多线程Reactor模式旨在分配多个reactor每一个reactor独立拥有一个selector,在网络通信中大体设计 ...
- PostgreSQL 数据库备份与还原
PostgreSQL 数据库备份与还原 目录 备份 还原 栗子 备份 PostgreSQL提供的一个工具pg_dump,逻辑导出数据,生成sql文件或其他格式文件,pg_dump是一个客户端工具,可以 ...
- Pysam 处理bam文件
Pysam可用来处理bam文件 安装: 用 pip 或者 conda即可 使用: Pysam的函数有很多,主要的读取函数有: AlignmentFile:读取BAM/CRAM/SAM文件 Varian ...