【BZOJ2432】【NOI2011】兔农(数论,矩阵快速幂)

题面

BZOJ

题解

这题\(75\)分就是送的,我什么都不想写。

先手玩一下,发现每次每次出现\(mod\ K=1\)的数之后

把它减一,就变成了\(0\)。接着后面的数显然还是一个斐波那契数列

只是都乘了\(0\)之前的那个数作为倍数而已。

拿样例举个例子?以下数字都在模\(7\)意义下进行

1 1 2 3 5 0(1)

5 5 3 0(1)

3 3 6 2 0(1)

大概就是这样子。

当然,如果我们继续手玩下去,也许可以发现点什么?

1 1 2 3 5 0(1)

5 5 3 0(1)

3 3 6 2 0(1)

2 2 4 6 3 2 5 0

5 5 3 0(1)

似乎出现了循环???

那么,我们似乎可以按照找到末尾的\(0\),找下一行的零,找到循环节这样的步骤来。

至于这个循环节的长度相关的问题,可以看看Vfk的博客。orz

考虑一下怎么计算这个\(0\)的位置?事实上是在找\(1\)的位置

而上面举例中的每一行都是一个斐波那契数列乘上\(x\)

其中\(x\)是上一行中倒数第二个数字

那么,\(fib[len]*x=1\),而\(x\)对于我们来说是一个已知项

所以这个过程变成了一个求逆的过程。

而有根据\(vfk\)的博客,斐波那契数列在模\(K\)意义下的循环节长度不超过\(6K\)

所以我们可以暴力算一个循环节的斐波那契数列

这样子,我们的过程就变成了

找到当前行末尾的位置,对应的乘一下,得到下一行的倍数

如果下一行的开头这个数字已经被得到过,那么出现了全局的循环节,

直接暴力算就可以了。

如果发现此时逆元不存在,证明没有循环,直接矩阵快速幂即可。

否则的话继续矩阵快速幂找下一行即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 1001000
inline ll read()
{
RG ll x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll MOD;
void add(ll &x,ll y){x+=y;if(x>=MOD)x-=MOD;}
struct Matrix
{
ll s[4][4];
ll* operator[](int x){return s[x];}
void clear(){memset(s,0,sizeof(s));}
void init(){clear();s[1][1]=s[2][2]=s[3][3]=1;}
}nt,lt,ans,ret[MAX];
Matrix operator*(Matrix a,Matrix b)
{
Matrix ret;ret.clear();
for(int i=1;i<=3;++i)
for(int j=1;j<=3;++j)
for(int k=1;k<=3;++k)
add(ret[i][j],1ll*a[i][k]*b[k][j]%MOD);
return ret;
}
Matrix fpow(Matrix a,ll b)
{
Matrix s;s.init();
while(b){if(b&1)s=s*a;a=a*a;b>>=1;}
return s;
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=1;y=0;return;}
exgcd(b,a%b,x,y);
ll tmp=y;
y=x-(a/b)*y;x=tmp;
}
ll f[MAX<<3],n,K,vis[MAX],inv[MAX],len[MAX];
bool book[MAX];
int main()
{
n=read();K=read();MOD=read();
f[1]=f[2]=1;bool fl=false;
for(int i=3;;++i)
{
f[i]=(f[i-1]+f[i-2])%K;
if(!vis[f[i]])vis[f[i]]=i;
if(f[i]==1&&f[i-1]==1)break;
}
nt[1][2]=nt[2][1]=nt[2][2]=nt[3][3]=1;
lt.init();lt[3][2]=-1;
ans[1][1]=ans[1][3]=1;
for(ll t=1;n;)
{
if(!inv[t])
{
if(__gcd(t,K)!=1)inv[t]=-1;
else
{
ll x,y;exgcd(t,K,x,y);
inv[t]=(x+K)%K;
}
}
if(inv[t]==-1){ans=ans*fpow(nt,n);break;}
if(!book[t]||fl)
{
book[t]=true;
if(!vis[inv[t]]){ans=ans*fpow(nt,n);break;}
len[t]=vis[inv[t]];
if(n>=len[t])
{
n-=len[t];
ret[t]=fpow(nt,len[t])*lt;
ans=ans*ret[t];
t=t*f[len[t]-1]%K;
}
else{ans=ans*fpow(nt,n);break;}
}
else
{
Matrix now;ll cnt=0;now.init();
for(ll i=t*f[len[t]-1]%K;i!=t;i=i*f[len[i]-1]%K)
now=now*ret[i],cnt+=len[i];
now=ret[t]*now;cnt+=len[t];
ans=ans*fpow(now,n/cnt);
n%=cnt;fl=true;
}
}
printf("%lld\n",(ans[1][2]%MOD+MOD)%MOD);
return 0;
}

【BZOJ2432】【NOI2011】兔农(数论,矩阵快速幂)的更多相关文章

  1. [BZOJ2432][Noi2011]兔农 矩阵乘法+exgcd

    2432: [Noi2011]兔农 Time Limit: 10 Sec  Memory Limit: 256 MB Description 农夫栋栋近年收入不景气,正在他发愁如何能多赚点钱时,他听到 ...

  2. HDU 2256 Problem of Precision 数论矩阵快速幂

    题目要求求出(√2+√3)2n的整数部分再mod 1024. (√2+√3)2n=(5+2√6)n 如果直接计算,用double存值,当n很大的时候,精度损失会变大,无法得到想要的结果. 我们发现(5 ...

  3. BZOJ2432 [Noi2011]兔农

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  4. 数论+矩阵快速幂|斐波那契|2014年蓝桥杯A组9-fishers

    标题:斐波那契 斐波那契数列大家都非常熟悉.它的定义是: f(x) = 1 .... (x=1,2) f(x) = f(x-1) + f(x-2) .... (x>2) 对于给定的整数 n 和 ...

  5. 【BZOJ4002】[JLOI2015]有意义的字符串(数论,矩阵快速幂)

    [BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{ ...

  6. cf 450b 矩阵快速幂(数论取模 一大坑点啊)

    Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...

  7. HDU6395 Sequence(矩阵快速幂+数论分块)

    题意: F(1)=A,F(2)=B,F(n)=C*F(n-2)+D*F(n-1)+P/n 给定ABCDPn,求F(n) mod 1e9+7 思路: P/n在一段n里是不变的,可以数论分块,再在每一段里 ...

  8. 数学--数论--HDU - 6395 Let us define a sequence as below 分段矩阵快速幂

    Your job is simple, for each task, you should output Fn module 109+7. Input The first line has only ...

  9. 【数论】 快速幂&&矩阵快速幂

    首先复习快速幂 #include<bits/stdc++.h> using namespace std; long long power(long long a,long long b,l ...

随机推荐

  1. 前端--再遇jQuery

    一.属性 属性(如果你的选择器选出了多个对象,那么默认只会返回第一个属性) attr(属性名|属性值) --一个参数是获取属性的值,两个参数是设置属性值 --点击图片加载示例 removeAttr(属 ...

  2. 安装文件报错error while loading shared libraries: libssl.so.6

    http://www.openssl.org/source/  这里下载http://www.openssl.org/source/openssl-1.0.0r.tar.gz 安装命令为:tar -z ...

  3. 母版页 MasterPage

    母版页是一个扩展名为.master的ASP.NET文件,主要是为了应用程序创建统一的用户功能界面和样式. ContentPlaceHolder控件只能在母版页中使用,在平常的web页面使用,会发生解析 ...

  4. 剑指 Offer——和为 S 的连续正数序列

    1. 题目 2. 解答 定义两个指针,刚开始分别指向 1 和 2,求出位于这两个指针之间的元素和.如果和大于 S,前面的指针向后移直到和不大于 S 为止:反之,如果和等于 S,则此时两个指针之间的元素 ...

  5. How to pass an Amazon account review

    Have you ever sold products on Amazon? How about sold so much within the first week that amazon deci ...

  6. centos下部署jenkins

    本文摘抄自:https://www.cnblogs.com/edward2013/p/5284503.html  ,请支持原版! 1. 安装JDK 1 yum -y install java 2.安装 ...

  7. 如何理解IPD+CMMI+Scrum一体化研发管理解决方案之IPD篇

    如何快速响应市场的变化,如何推出更有竞争力的产品,如何在竞争中脱颖而出,是国内研发企业普遍面临的核心问题,为了解决这些问题,越来越多的企业开始重视创新与研发管理,加强研发过程的规范化,集成产品开发(I ...

  8. LeetCode 36. Valid Sudoku (C++)

    题目: Determine if a 9x9 Sudoku board is valid. Only the filled cells need to be validated according t ...

  9. .net组件和com组件&托管代码和非托管代码

    com组件和.net组件: COM组件是非托管对象,可以不需要.NET框架而直接运行,.NET框架组件是托管对象,必须有.NET框架的支撑才能运行. COM组件有独立的类型库文件,而.NET组件是通过 ...

  10. js正则表达式匹配斜杠 网址 url等

    项目中有个需求,需要从url中截取ID.需要在前台用js匹配截取,所以就百度一下,发现都没有说清楚,所以这里就总结下. 正则表达式如下: var epId=0; //工厂企业ID var urlInd ...