【BZOJ3122】随机数生成器(BSGS,数论)

题面

BZOJ

洛谷

题解

考虑一下递推式

发现一定可以写成一个

\(X_{i+1}=(X_1+c)*a^i-c\)的形式

直接暴力解一下

\(X_{i+1}+c=a(X_i+c)\)

解得\(c=\frac{b}{a-1}\)

这样子,相当于得到了一个\(k*a^x\equiv t+c(mod\ p)\)这样的式子

这个显然是个裸的\(BSGS\)

直接解出来就行了

注意特判一下\(a=0,a=1,X1=t\)这几种情况。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int fpow(int a,int b,int MOD)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
const int HashMod=111111;
struct HashTable
{
struct Line{int u,v,next;}e[100000];
int h[HashMod],cnt;
void Add(int u,int v,int w){e[++cnt]=(Line){w,v,h[u]};h[u]=cnt;}
void clear(){memset(h,0,sizeof(h));cnt=0;}
void Insert(int x,int i){Add(x%HashMod,i,x);}
int Query(int x)
{
for(RG int i=h[x%HashMod];i;i=e[i].next)
if(e[i].u==x)return e[i].v;
return -1;
}
}Hash;
int BSGS(int a,int y,int z,int p)
{
if(y%p==0)return -2;
if(z==a)return -1;
Hash.clear();
int m=sqrt(p)+1;
for(RG int i=0,t=z;i<m;++i,t=1ll*t*y%p)Hash.Insert(t,i);
for(RG int i=1,tt=fpow(y,m,p),t=1ll*a*tt%p;i<=m;++i,t=1ll*t*tt%p)
{
int B=Hash.Query(t);if(B==-1)continue;
return i*m-B;
}
return -2;
}
int main()
{
int T=read(),p,a,b,c,X1,t;
while(T--)
{
p=read();a=read();b=read();X1=read();t=read();
if(X1==t){puts("1");continue;}
if(a==0){if(b==t)puts("2");else puts("-1");continue;}
if(a==1)
{
if(b==0){puts("-1");continue;}
t=(t+p-X1)%p;
t=1ll*t*fpow(b,p-2,p)%p;
printf("%d\n",t+1);
continue;
}
c=1ll*b*fpow(a-1,p-2,p)%p;
t=(t+c)%p;X1=(X1+c)%p;
printf("%d\n",BSGS(X1,a,t,p)+1);
}
return 0;
}

【BZOJ3122】随机数生成器(BSGS,数论)的更多相关文章

  1. BZOJ3122 随机数生成器——BSGS

    题意 链接 给定 $p,\ a,\ b, \ x_1$,现有一数列 $$x_{i+1} \equiv (ax_i + b) \ mod \ p$$ 求最小的 $i$ 满足 $x_i = t$ 分析 代 ...

  2. 【BZOJ3122】[Sdoi2013]随机数生成器 BSGS+exgcd+特判

    [BZOJ3122][Sdoi2013]随机数生成器 Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数.   接下来T行,每行有五个整数p,a,b, ...

  3. 【BZOJ-3122】随机数生成器 BSGS

    3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1362  Solved: 531[Submit][Sta ...

  4. 【BZOJ 3122】 [Sdoi2013]随机数生成器 (BSGS)

    3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1442  Solved: 552 Description ...

  5. BZOJ3122: [Sdoi2013]随机数生成器(BSGS)

    题意 题目链接 Sol 这题也比较休闲. 直接把\(X_{i+1} = (aX_i + b) \pmod P\)展开,推到最后会得到这么个玩意儿 \[ a^{i-1} (x_1 + \frac{b}{ ...

  6. 【bzoj3122】[Sdoi2013]随机数生成器 BSGS思想的利用

    题目描述 给出递推公式 $x_{i+1}=(ax_i+b)\mod p$ 中的 $p$.$a$.$b$.$x_1$ ,其中 $p$ 是质数.输入 $t$ ,求最小的 $n$ ,使得 $x_n=t$ . ...

  7. [bzoj3122][SDOI2013]随机数生成器 ——BSGS,数列

    题目大意 给定递推序列: F[i] = a*F[i-1] + b (mod c) 求一个最小的i使得F[i] == t 题解 我们首先要化简这个数列,作为一个学渣,我查阅了一些资料: http://d ...

  8. bzoj 3122 随机数生成器 - BSGS

    Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数.   接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. ...

  9. bzoj 3122 : [Sdoi2013]随机数生成器 BSGS

    BSGS算法 转自:http://blog.csdn.net/clove_unique 问题 给定a,b,p,求最小的非负整数x,满足$a^x≡b(mod \ p)$ 题解 这就是经典的BSGS算法, ...

  10. Bzoj 3122 [Sdoi2013]随机数生成器(BSGS+exgcd)

    Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 Outp ...

随机推荐

  1. springboot入门之一:环境搭建

    springboot简介 springboot做为微服务的开发集合框架,有着天然的好处,它不像springmvc那样笨重繁杂,springmvc众多的配置使得开发人员很厌烦,为解决众多的配置带来的烦扰 ...

  2. php-laravel安装与使用

    1.框架作用    提供了一些主体功能,方便开发者快速开发 2.PHP框架    laravel    ThinkPHP 3.首先要安装composer软件    1.作用        主要管理PH ...

  3. 牛客小白月赛9 A签到(分数取模,逆元)

    传送门 对分母求一下逆元,把除法取模变成乘法取模,逆元介绍看这里 这种方法只适合模为质数的情况 #include<bits/stdc++.h> using namespace std; ; ...

  4. CSP201609-2:火车购票

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...

  5. 该用哪个:Redis与Memcached之间如何选择呢?

    华为云分布式缓存Redis5.0和Memcached都是华为云DCS的核心产品. 那么在不同的使用场景之下,如何选择Redis5.0和Memcached呢? 就由小编为大家进行详细的数据对比分析吧 R ...

  6. 【Python 开发】Python目录

    目录: [Python开发]第一篇:计算机基础 [Python 开发]第二篇 :Python安装 [Python 开发]第三篇:python 实用小工具

  7. 【第七章】MySQL数据库备份-物理备份

    一.数据库备份 备份的目的: 备份: 能够防止由于机械故障以及人为误操作带来的数据丢失,例如将数据库文件保存在了其它地方. 冗余: 数据有多份冗余,但不等备份,只能防止机械故障还来的数据丢失,例如主备 ...

  8. golang笔记1

    golang笔记1 go代码是用包来组织的,每个包有一个或多个go文件组成,这些go文件文件放在一个文件夹中 每个源文件开始都用一个package声明,指明本源文件属于哪个包 pakage声明后紧跟这 ...

  9. Python基础知识-09-函数

    python其他知识目录 1.函数介绍 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段.函数能提高应用的模块性,和代码的重复利用率.你已经知道Python提供了许多内建函数,比如pr ...

  10. 【探路者】Alpha发布用户使用报告

    预期统计用户使用数量:13人. 博文内容:1用户列表.2评论列表.3统计与总结 1用户列表: 二.评论内容 用户1:1不够好看.2不应该是中国地图为背景,蛇头是人物头像的么?(那是宣传片,不是预览图) ...