bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)
一直以为这题要martix-tree,实际上因为有相同权值的边不大于10条于是dfs就好了...
先用kruskal求出每种权值的边要选的次数num,然后对于每种权值的边2^num暴搜一下选择的情况算出多少种情况合法,对于每种权值的边的方案用乘法原理乘起来就是答案了
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=,mod=;
struct poi{int x,y,z,pos;}a[maxn];
int n,m,cntt,sum,cnt,ans;
int num[maxn],fa[maxn],l[maxn],r[maxn];
inline void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
bool cmp(poi a,poi b){return a.z<b.z;}
int gf(int x){return fa[x]==x?x:gf(fa[x]);}
void dfs(int w,int x,int dep)
{
if(dep>num[w])return;
if(x>r[w]){if(dep==num[w])sum++;return;}
int xx=gf(a[x].x),yy=gf(a[x].y);
if(xx!=yy)fa[xx]=yy,dfs(w,x+,dep+),fa[xx]=xx;
dfs(w,x+,dep);
}
int main()
{
read(n);read(m);
for(int i=;i<=m;i++)read(a[i].x),read(a[i].y),read(a[i].z);
sort(a+,a++m,cmp);
for(int i=;i<=m;i++)
{
if(a[i].z!=a[i-].z)r[cnt++]=i-,l[cnt]=i;
a[i].pos=cnt;
}
r[cnt]=m;
for(int i=;i<=n;i++)fa[i]=i;
for(int i=;i<=m;i++)
{
int x=gf(a[i].x),y=gf(a[i].y);
if(x!=y)fa[x]=y,num[a[i].pos]++,cntt++;
}
if(cntt!=n-)return puts(""),;
for(int i=;i<=n;i++)fa[i]=i;ans=;
for(int i=;i<=cnt;i++)
if(num[i])
{
sum=;dfs(i,l[i],);
for(int j=l[i];j<=r[i];j++)fa[gf(a[j].x)]=gf(a[j].y);
ans=1ll*ans*sum%mod;
}
printf("%d\n",ans);
}
bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)的更多相关文章
- bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)
1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等 就是说如果一种方案中权值为1的边有n条 ...
- BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )
不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...
- [BZOJ1016] [JSOI2008] 最小生成树计数 (Kruskal)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- bzoj1016 [JSOI2008]最小生成树计数——Kruskal+矩阵树定理
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 从 Kruskal 算法的过程来考虑产生多种方案的原因,就是边权相同的边有一样的功能, ...
- 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)
1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...
- bzoj1016 [JSOI2008]最小生成树计数
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3517 Solved: 1396[Submit][St ...
- BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- bzoj1016/luogu4208 最小生成树计数 (kruskal+暴搜)
由于有相同权值的边不超过10条的限制,所以可以暴搜 先做一遍kruskal,记录下来每个权值的边使用的数量(可以离散化一下) 可以证明,对于每个权值,所有的最小生成树中选择的数量是一样的.而且它们连成 ...
随机推荐
- UVA 11542 高斯消元
从数组中选择几个数,要求他们的乘积可以开平方,问有多少种方案. 先将单个数拆分成质因子,对于这个数而言,那些指数为奇数的质因子会使这个数无法被开平方. 所以我们需要选择一个对应质因子指数为奇数的元素, ...
- 多重共性和VIF检验
图片来源https://wenku.baidu.com/view/7008df8383d049649b66581a.html 和 https://wenku.baidu.com/view/6acdf9 ...
- Python基础灬列表&字典生成式
列表生成式 # 求1~10偶数的平方 # 1.常规写法 a_list = [] for i in range(1, 11): if i % 2 == 0: a_list.append(i * i) p ...
- Python Tkinter-Event
1.点击 from tkinter import * root=Tk() def printCoords(event): print(event.x,event.y) bt1=Button(root, ...
- 腾讯视频qlv格式转换MP4普通视频方法
QLV格式视频不是那么好对付的,似乎是一种加密格式,试着把.qlv改成.mp4或.flv都没有用,用格式工厂等转换软件转换也根本无法识别.但这并不意味着没有办法,其实真正的方法是不用任何工具: 1,我 ...
- win10 redis安装教程
下载解压,没什么好说的,在解压后的目录下有以下这些文件: 在 命令行 启动服务端 redis目录下执行: redis-server.exe redis.windows.conf 如果需要 开机启动:执 ...
- windows64系统下安装 redis服务 (详细)
Linux下Redis安装链接 : 转到 redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表) ...
- mysql 查询数据库或某张表有多大(字节)
转载:https://www.cnblogs.com/diandiandidi/p/5582309.html 1.要查询表所占的容量,就是把表的数据和索引加起来就可以了 select sum(DATA ...
- Markdown使用github风格时报TLS错误解决办法
https://docs.microsoft.com/en-us/officeonlineserver/enable-tls-1-1-and-tls-1-2-support-in-office-onl ...
- huawei oceanstor
华为产品:OceanStor 6000 V3系列 OceanStor 6800 V3 网页登入设备页面:https+ip+端口 资源分配界面: 首页: wwn为2100xxxxxxxx47e4,设 ...