第一行是两个整数N和S,其中N是树的节点数。

第二行是N个正整数,第i个整数表示节点i的正整数。

接下来的N-1行每行是2个整数x和y,表示y是x的儿子。

输出格式:

输出路径节点总和为S的路径数量。

输入样例:

输出样例:

3 3

1 2 3

1 2

1 3

数据范围:

对于30%数据,N≤100;

对于60%数据,N≤1000;

对于100%数据,N≤100000,所有权值以及S都不超过1000。

倍增预处理出每个节点向上走2^k步到达的点和权值和,对每个点二分向上能走(权值和小于S)的距离

#include<cstdio>
inline int input(){
int x=,c=getchar();
while(c>||c<)c=getchar();
while(c>&&c<)x=x*+c-,c=getchar();
return x;
}
const int N=;
int n,S,ans=;
int vs[][N],fa[][N];
int main(){
n=input();S=input();
for(int i=;i<=n;i++)vs[][i]=input();
for(int i=,a,b;i<n;i++){
a=input();b=input();
fa[][b]=a;
}
for(int t=;t<;t++){
for(int i=;i<=n;i++){
int f=fa[t][i];
fa[t+][i]=fa[t][f];
vs[t+][i]=vs[t][f]+vs[t][i];
}
}
for(int i=;i<=n;i++){
int s=S,w=i;
for(int k=;k;k--){
int f=fa[k][w];
if(!f)continue;
if(vs[k][w]<s)s-=vs[k][w],w=f;
}
if(s==vs[][w])++ans;
}
printf("%d\n",ans);
return ;
}

bzoj2783 树的更多相关文章

  1. [BZOJ2783/JLOI2012]树 树上倍增

    Problem 树 题目大意 给出一棵树,求这个树上的路径的数量,要求路径上的点权和等于s且路径的上每个点深度不同. Solution 这个题目可以用不少方法做. 首先,路径上每个节点的深度不同决定了 ...

  2. 【BZOJ2783】[JLOI2012]树 DFS+栈+队列

    [BZOJ2783][JLOI2012]树 Description 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节 ...

  3. [bzoj2783][JLOI2012]树_树的遍历

    树 bzoj2783 JLOI2012 题目大意:给定一棵n个点的树.求满足条件的路径条数.说一个路径是满足条件的,当且仅当这条路径上每个节点深度依次递增且点权和为S. 注释:$1\le n\le 1 ...

  4. BZOJ2783: [JLOI2012]树 dfs+set

    2783: [JLOI2012]树 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 588  Solved: 347 Description 数列 提交文 ...

  5. BZOJ2783: [JLOI2012]树

    Description 数列 提交文件:sequence.pas/c/cpp 输入文件:sequence.in 输出文件:sequence.out 问题描述: 把一个正整数分成一列连续的正整数之和.这 ...

  6. BZOJ2783: [JLOI2012]树(树上前缀和+set)

    Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 1215  Solved: 768[Submit][Status][Discuss] Descriptio ...

  7. 【bzoj2783】[JLOI2012]树 树上倍增

    题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不必一 ...

  8. 【dfs】【哈希表】bzoj2783 [JLOI2012]树

    因为所有点权都是正的,所以对每个结点u来说,每条从根到它的路径上只有最多一个结点v符合d(u,v)=S. 所以我们可以边dfs边把每个结点的前缀和pre[u]存到一个数据结构里面,同时查询pre[u] ...

  9. B树——算法导论(25)

    B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的, ...

随机推荐

  1. Spring Cloud OAuth2(一) 搭建授权服务

    概要 本文内容主要为spring cloud 授权服务的搭建,采用jwt认证. GitHub 地址:https://github.com/fp2952/spring-cloud-base/tree/m ...

  2. maven3官网下载地址

    maven3官网下载地址:https://archive.apache.org/dist/maven/maven-3/

  3. luogu p3366 最小生成树模板

    倒腾了一个小时  自己也没去看网上的 总算自己能写出来模板了 kruskal //最小生成树 每次找最短的边 #include<bits/stdc++.h> using namespace ...

  4. BZOJ 2876 【NOI2012】 骑行川藏

    题目链接:骑行川藏 听说这道题需要一些高数知识 于是膜了一发dalao的题解……然后就没了…… 不要吐槽我的精度TAT……eps设太小了就TLE,大了就Wa……我二分的边界是对着数据卡的…… 下面贴代 ...

  5. mac 下安装 express

    express为js的后端框架, 终端 >>>   npm install -g express-generator 然后cd到您要创建项目的目录之下,输入 >>> ...

  6. C#中标准Dispose模式的实现(转载)

    需要明确一下C#程序(或者说.NET)中的资源.简单的说来,C#中的每一个类型都代表一种资源,而资源又分为两类: 托管资源:由CLR管理分配和释放的资源,即由CLR里new出来的对象: 非托管资源:w ...

  7. QtWebKit_cookie

    1.百度搜索“qtwebkit cookie” 2. 2.1.qtwebkit 里 cookie 信息的保存 http://blog.tianya.cn/post-227188-33378112-1. ...

  8. eclipse下maven springMVC 整合 mybatis

    参考文档:http://blog.csdn.net/zhshulin/article/details/37956105   1.搭建maven工程,具体参见我另一篇博客:http://www.cnbl ...

  9. 【Python】实现将testlink上的用例指定格式保存至Excel,用于修改上传

    背景 前一篇博客记录的可以上传用例到testlink指定用例集的脚本,内部分享给了之后,同事希望能将testlink上原有的用例下载下来,用于下次修改上传,所有有了本文脚本. 具体实现 获取用例信息 ...

  10. hdu4292网络流dinic

    因为数组开小了,导致tle了一整天:( tle的几点原因:http://blog.csdn.net/ameir_yang/article/details/53698478 思路都是对的,把每个人进行拆 ...