矩阵的特征值和特征向量的雅克比算法C/C++实现
矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念。在遥感领域也是经经常使用到。比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量。
依据普通线性代数中的概念,特征值和特征向量能够用传统的方法求得,可是实际项目中一般都是用数值分析的方法来计算,这里介绍一下雅可比迭代法求解特征值和特征向量。
雅克比方法用于求实对称阵的所有特征值、特征向量。
对于实对称阵 A,必有正交阵 U。使
U TA U = D。
当中 D 是对角阵,其主对角线元 li 是 A 的特征值. 正交阵 U 的第 j 列是 A 的属于 li 的特征向量。
原理:Jacobi 方法用平面旋转对矩阵 A 做类似变换,化A 为对角阵,进而求出特征值与特征向量。
既然用到了旋转,这里就介绍一下旋转矩阵。
对于 p ≠ q,以下定义的 n 阶矩阵Upq 是平面旋转矩阵。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvemhvdXh1Z3VhbmcyMzY=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="" />
easy验证 Upq是正交阵。
对于向量x,Upq x 相当于把坐标轴Oxp和 Oxq 于所在的平面内旋转角度 j .
变换过程: 在保证类似条件下,使主对角线外元素趋于零!
记 n 阶方阵A = [aij], 对 A 做以下的变换:
A1= UpqTAUpq,
A1 仍然是实对称阵,由于,UpqT =Upq-1,知A1与 A 的特征值同样。
前面说了雅可比是一种迭代算法。所以每一步迭代时,须要求出旋转后新的矩阵,那么新的矩阵元素怎样求,这里给出详细公式例如以下:
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvemhvdXh1Z3VhbmcyMzY=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="" />
由上面的一组公式能够看到:
(1)矩阵A1 的第p 行、列与第 q 行、列中的元素发生了变化,其他行、列中的元素不变。
(2)p、q各自是前一次的迭代矩阵A的非主对角线上绝对值最大元素的行列号
(3) j是旋转角度。能够由以下的公式计算:
归纳能够得到雅可比迭代法求解矩阵特征值和特征向量的详细过程例如以下:
(1) 初始化特征向量为对角阵V。即主对角线的元素都是1.其他元素为0。
(2) 在A的非主对角线元素中,找到绝对值最大元素 apq 。
(3) 用式(3.14)计算tan2j,求 cosj, sinj 及矩阵Upq .
(4) 用公式(1)-(4)求A1;用当前特征向量矩阵V乘以矩阵Upq得到当前的特征向量V。
(5) 若当前迭代前的矩阵A的非主对角线元素中最大值小于给定的阈值e时。停止计算;否则, 令A = A1 , 反复运行(2) ~ (5)。 停止计算时。得到特征值 li≈(A1) ij ,i,j= 1,2,…,n.以及特征向量V。
(6) 这一步可选。
依据特征值的大小从大到小的顺序又一次排列矩阵的特征值和特征向量。
到如今为止,每一步的计算过程都十分清楚了,写出代码也就不是难事了,详细代码例如以下:
/**
* @brief 求实对称矩阵的特征值及特征向量的雅克比法
* 利用雅格比(Jacobi)方法求实对称矩阵的所有特征值及特征向量
* @param pMatrix 长度为n*n的数组。存放实对称矩阵
* @param nDim 矩阵的阶数
* @param pdblVects 长度为n*n的数组,返回特征向量(按列存储)
* @param dbEps 精度要求
* @param nJt 整型变量。控制最大迭代次数
* @param pdbEigenValues 特征值数组
* @return
*/
bool CPCAAlg::JacbiCor(double * pMatrix,int nDim, double *pdblVects, double *pdbEigenValues, double dbEps,int nJt)
{
for(int i = 0; i < nDim; i ++)
{
pdblVects[i*nDim+i] = 1.0f;
for(int j = 0; j < nDim; j ++)
{
if(i != j)
pdblVects[i*nDim+j]=0.0f;
}
} int nCount = 0; //迭代次数
while(1)
{
//在pMatrix的非对角线上找到最大元素
double dbMax = pMatrix[1];
int nRow = 0;
int nCol = 1;
for (int i = 0; i < nDim; i ++) //行
{
for (int j = 0; j < nDim; j ++) //列
{
double d = fabs(pMatrix[i*nDim+j]); if((i!=j) && (d> dbMax))
{
dbMax = d;
nRow = i;
nCol = j;
}
}
} if(dbMax < dbEps) //精度符合要求
break; if(nCount > nJt) //迭代次数超过限制
break; nCount++; double dbApp = pMatrix[nRow*nDim+nRow];
double dbApq = pMatrix[nRow*nDim+nCol];
double dbAqq = pMatrix[nCol*nDim+nCol]; //计算旋转角度
double dbAngle = 0.5*atan2(-2*dbApq,dbAqq-dbApp);
double dbSinTheta = sin(dbAngle);
double dbCosTheta = cos(dbAngle);
double dbSin2Theta = sin(2*dbAngle);
double dbCos2Theta = cos(2*dbAngle); pMatrix[nRow*nDim+nRow] = dbApp*dbCosTheta*dbCosTheta +
dbAqq*dbSinTheta*dbSinTheta + 2*dbApq*dbCosTheta*dbSinTheta;
pMatrix[nCol*nDim+nCol] = dbApp*dbSinTheta*dbSinTheta +
dbAqq*dbCosTheta*dbCosTheta - 2*dbApq*dbCosTheta*dbSinTheta;
pMatrix[nRow*nDim+nCol] = 0.5*(dbAqq-dbApp)*dbSin2Theta + dbApq*dbCos2Theta;
pMatrix[nCol*nDim+nRow] = pMatrix[nRow*nDim+nCol]; for(int i = 0; i < nDim; i ++)
{
if((i!=nCol) && (i!=nRow))
{
int u = i*nDim + nRow; //p
int w = i*nDim + nCol; //q
dbMax = pMatrix[u];
pMatrix[u]= pMatrix[w]*dbSinTheta + dbMax*dbCosTheta;
pMatrix[w]= pMatrix[w]*dbCosTheta - dbMax*dbSinTheta;
}
} for (int j = 0; j < nDim; j ++)
{
if((j!=nCol) && (j!=nRow))
{
int u = nRow*nDim + j; //p
int w = nCol*nDim + j; //q
dbMax = pMatrix[u];
pMatrix[u]= pMatrix[w]*dbSinTheta + dbMax*dbCosTheta;
pMatrix[w]= pMatrix[w]*dbCosTheta - dbMax*dbSinTheta;
}
} //计算特征向量
for(int i = 0; i < nDim; i ++)
{
int u = i*nDim + nRow; //p
int w = i*nDim + nCol; //q
dbMax = pdblVects[u];
pdblVects[u] = pdblVects[w]*dbSinTheta + dbMax*dbCosTheta;
pdblVects[w] = pdblVects[w]*dbCosTheta - dbMax*dbSinTheta;
} } //对特征值进行排序以及又一次排列特征向量,特征值即pMatrix主对角线上的元素
std::map<double,int> mapEigen;
for(int i = 0; i < nDim; i ++)
{
pdbEigenValues[i] = pMatrix[i*nDim+i]; mapEigen.insert(make_pair( pdbEigenValues[i],i ) );
} double *pdbTmpVec = new double[nDim*nDim];
std::map<double,int>::reverse_iterator iter = mapEigen.rbegin();
for (int j = 0; iter != mapEigen.rend(),j < nDim; ++iter,++j)
{
for (int i = 0; i < nDim; i ++)
{
pdbTmpVec[i*nDim+j] = pdblVects[i*nDim + iter->second];
} //特征值又一次排列
pdbEigenValues[j] = iter->first;
} //设定正负号
for(int i = 0; i < nDim; i ++)
{
double dSumVec = 0;
for(int j = 0; j < nDim; j ++)
dSumVec += pdbTmpVec[j * nDim + i];
if(dSumVec<0)
{
for(int j = 0;j < nDim; j ++)
pdbTmpVec[j * nDim + i] *= -1;
}
} memcpy(pdblVects,pdbTmpVec,sizeof(double)*nDim*nDim);
delete []pdbTmpVec; return 1;
}
矩阵的特征值和特征向量的雅克比算法C/C++实现的更多相关文章
- 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量
[前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...
- 利用python做矩阵的简单运算(行列式、特征值、特征向量等的求解)
import numpy as np lis = np.mat([[1,2,3],[3,4,5],[4,5,6]]) print(np.linalg.inv(lis)) # 求矩阵的逆矩阵 [[-1. ...
- (原)使用mkl计算特征值和特征向量
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5585271.html 参考文档:mkl官方文档 lapack_int LAPACKE_sgeev(in ...
- 特征值、特征向量与PCA算法
一.复习几个矩阵的基本知识 1. 向量 1)既有大小又有方向的量成为向量,物理学中也被称为矢量,向量的坐标表示a=(2,3),意为a=2*i + 3*j,其中i,j分别是x,y轴的单位向量. 2)向量 ...
- c语言计算矩阵特征值和特征向量-1(幂法)
#include <stdio.h> #include <math.h> #include <stdlib.h> #define M 3 //方阵的行数 列数 #d ...
- opencv学习之路(38)、Mat像素统计基础——均值,标准差,协方差;特征值,特征向量
本文部分内容转自 https://www.cnblogs.com/chaosimple/p/3182157.html 一.统计学概念 二.为什么需要协方差 三.协方差矩阵 注:上述协方差矩阵还需要除以 ...
- eig()函数求特征值、特征向量、归一化
在MATLAB中,计算矩阵A的特征值和特征向量的函数是eig(A),常用的调用格式有 5种:(1) E=eig(A):求矩阵A的全部特征值,构成向量E. 想求最大特征值用:max(eig(A))就好了 ...
- Python与矩阵论——特征值与特征向量
Python计算特征值与特征向量案例 例子1 import numpy as np A = np.array([[3,-1],[-1,3]]) print('打印A:\n{}'.format(A)) ...
- Hermite 矩阵的特征值不等式
将要学习 关于 Hermite 矩阵的特征值不等式. Weyl 定理 以及推论. Weyl 定理 Hermann Weyl 的如下定理是大量不等式的基础,这些不等式要么涉及两个 Hermite 矩 ...
随机推荐
- django中数据库的相关操作
一.使用环境 python2.7,django>1.7 二.数据库进行配置 在setting文件中进行修改 1.找到DATABASES DATABASES = { 'default': { 'E ...
- [转]Golang 中使用 JSON 的小技巧
taowen是json-iterator的作者. 序列化和反序列化需要处理JSON和struct的关系,其中会用到一些技巧. 原文 Golang 中使用 JSON 的小技巧是他的经验之谈,介绍了一些s ...
- jvm 性能调优 经验总结---转
最近因项目存在内存泄漏,故进行大规模的JVM性能调优 , 现把经验做一记录. 一.JVM内存模型及垃圾收集算法 1.根据Java虚拟机规范,JVM将内存划分为: New(年轻代) Tenured(年老 ...
- 李洪强iOS之集成极光推送三iOS集成指南
李洪强iOS之集成极光推送三iOS集成指南 SDK说明 适用版本 本文匹配的 SDK版本:r2.1.5 以后.查看最近更新了解最新的SDK更新情况.使用Xcode 6及以上版本可以使用新版Push S ...
- 用C++画光(一)——优化
写在前面 在先前的画光系列中,实现实体几何.反射.折射等效果,但是最大的一个缺陷是复杂度太高.当采样是1024时,渲染时间直线上升(用4线程),以至好几个小时才能完成一副作品,实现太慢.然而,当我看到 ...
- spark内存概述
转自:https://github.com/jacksu/utils4s/blob/master/spark-knowledge/md/spark%E5%86%85%E5%AD%98%E6%A6%82 ...
- vi-vim :删除、撤销、恢复删除、复制删除
删除 1 删除命令 vi命令 操作键 x 删除当前光标处的字符 X 删除光标左边的字符 D 删除从当前光标到本行末尾的字符 J 删除两行之间的换行符 (亦可用于合并两行) dmove 删除从当前光标到 ...
- 【C#/WPF】Button按钮动态设置Background背景颜色
学习笔记: 在XAML中给Button设置颜色大家都懂的,本篇只是记录用C#代码动态生成的按钮设置Background背景颜色. new一个Button,设置Background时可看到该属性类型是S ...
- 转 Linux调优方案,sysctl.conf的设置
$ /proc/sys/net/core/wmem_max最大socket写buffer,可参考的优化值:873200 $ /proc/sys/net/core/rmem_max最大socket读bu ...
- java-动态获取项目根路径
${ pageContext.request.contextPath } <hr> <a href="${ pageContext.request.contextPath ...