BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)
第一问是来搞笑的。由欧拉函数的计算公式容易发现φ(i2)=iφ(i)。那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 。这样就有了杜教筛所要求的容易算前缀和的两个函数。一通套路即可。
- #include<iostream>
- #include<cstdio>
- #include<cmath>
- #include<cstdlib>
- #include<cstring>
- #include<algorithm>
- #include<map>
- using namespace std;
- #define ll long long
- #define P 1000000007
- #define N 1000010
- char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
- int gcd(int n,int m){return m==?n:gcd(m,n%m);}
- int read()
- {
- int x=,f=;char c=getchar();
- while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
- while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
- return x*f;
- }
- int n,phi[N],iphi[N],prime[N],cnt,inv6=;
- map<int,int> f;
- bool flag[N];
- inline void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
- int sumone(int x){return (1ll*x*(x+)>>)%P;}
- int sumtwo(int x){return 1ll*x*(x+)%P*(x<<|)%P*inv6%P;}
- int work(int x)
- {
- if (x<=min(n,N-)) return iphi[x];
- if (f.find(x)!=f.end()) return f[x];
- int s=sumtwo(x);
- for (int i=;i<=x;i++)
- {
- int t=x/(x/i);
- inc(s,P-1ll*(sumone(t)-sumone(i-)+P)*work(x/i)%P);
- i=t;
- }
- f[x]=s;return s;
- }
- int main()
- {
- #ifndef ONLINE_JUDGE
- freopen("bzoj4916.in","r",stdin);
- freopen("bzoj4916.out","w",stdout);
- const char LL[]="%I64d\n";
- #else
- const char LL[]="%lld\n";
- #endif
- n=read();cout<<<<endl;
- flag[]=;phi[]=;
- for (int i=;i<=min(n,N-);i++)
- {
- if (!flag[i]) prime[++cnt]=i,phi[i]=i-;
- for (int j=;j<=cnt&&prime[j]*i<=min(n,N-);j++)
- {
- flag[prime[j]*i]=;
- if (i%prime[j]==) {phi[prime[j]*i]=phi[i]*prime[j];break;}
- phi[prime[j]*i]=phi[i]*(prime[j]-);
- }
- }
- for (int i=;i<=min(n,N-);i++) iphi[i]=1ll*i*phi[i]%P;
- for (int i=;i<=min(n,N-);i++) inc(iphi[i],iphi[i-]);
- cout<<work(n);
- return ;
- }
BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)的更多相关文章
- BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】
题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...
- 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】
首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...
- 51nod 1239 欧拉函数之和【欧拉函数+杜教筛】
和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\phi(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\phi(i) ...
- bzoj 3944: Sum【莫比乌斯函数+欧拉函数+杜教筛】
一道杜教筛的板子题. 两个都是积性函数,所以做法是一样的.以mu为例,设\( f(n)=\sum_{d|n}\mu(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1} ...
- 51nod 1227 平均最小公倍数【欧拉函数+杜教筛】
以后这种题能用phi的就不要用mu-mu往往会带着个ln然后被卡常致死 把题目要求转换为前缀和相减的形式,写出来大概是要求这样一个式子: \[ \sum_{i=1}^{n}\sum_{j=1}^{i} ...
- 【luogu3768】简单的数学题 欧拉函数(欧拉反演)+杜教筛
题目描述 给出 $n$ 和 $p$ ,求 $(\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\gcd(i,j))\mod p$ . $n\le 10^{10}$ . ...
- LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻
P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...
- BZOJ4916: 神犇和蒟蒻【杜教筛】
Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...
- Bzoj4916: 神犇和蒟蒻
题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...
随机推荐
- PostgreSQL的checkpoint能否并行
对于此问题,在社区进行了提问,并得到了一些大牛的解答: http://postgresql.1045698.n5.nabble.com/Can-checkpoint-creation-be-paral ...
- ARKit-1
1.1-AR技术简介 增强现实技术(Augmented Reality,简称 AR),是一种实时地计算摄影机影像的位置及角度并加上相应图像.视频.3D模型的技术,这种技术的目标是在屏幕上把虚拟世界套在 ...
- Android开发笔记——以Volley图片加载、缓存、请求及展示为例理解Volley架构设计
Volley是由Google开源的.用于Android平台上的网络通信库.Volley通过优化Android的网络请求流程,形成了以Request-RequestQueue-Response为主线的网 ...
- javaweb(七)——HttpServletResponse对象(一)
Web服务器收到客户端的http请求,会针对每一次请求,分别创建一个用于代表请求的request对象.和代表响应的response对象.request和response对象即然代表请求和响应,那我们要 ...
- jmeter执行顺序及作用域规则
1.执行顺序 配置元件 前置处理器 定时器 采样器 后置处理器 断言 监听器 备注: 服务器响应为空的话后三个不执行 作用域内存在采样器时定时器.断言.前置/后置处理器才执行 逻辑控制器和采样器按照在 ...
- selenium +java 多个类公用driver问题
问题点:太久没有写selenium代码,居然把driver公用的问题忘记了,即:每写一个测试类,执行过程中都会新建一个窗口,这样应该说是非常不专业的. 大概想了一个方法,虽然看起来也不怎么专业,但感觉 ...
- 十几行代码带你用Python批量实现txt转xls,方便快捷
前天看到后台有一兄弟发消息说目前自己有很多txt 文件,领导要转成xls文件,问用python怎么实现,我在后台简单回复了下,其实完成这个需求方法有很多,因为具体的txt格式不清楚,当然如果是有明确分 ...
- 《疯狂前端开发讲义jQuery+Angular+Bootstrap前端开发实践》学习笔记
<疯狂前端开发讲义jQuery+Angular+Bootstrap前端开发实践>学习笔记 二〇一九年二月十三日星期三2时28分54秒 前提:本书适合有初步HTML.CSS.JavaScri ...
- object-fix/object-position
今日浏览某大神的一篇博文时发现如下写法: .container > div > img { width: 100%; height: 100%; object-fit: cover; } ...
- PLSQL事务
1 使用set transaction设置事务属性 2 只读事务 set transaction read only 3 读写事务 set transaction write; 4 在进行数据统计分析 ...