2016ACM/ICPC亚洲区大连站-重现赛(感谢大连海事大学)(7/10)
1001题意:n个人,给m对敌对关系,X个好人,Y个坏人。现在问你是否每个人都是要么是好人,要么是坏人。
先看看与X,Y个人有联通的人是否有矛盾,没有矛盾的话咋就继续遍历那些不确定的人关系,随便取一个数3,与其相连的就是4,间隔就要相同,dfs搜过去就可以判断了
- #include<bits/stdc++.h>
- using namespace std;
- #pragma comment(linker, "/STACK:102400000,102400000")
- #define ls i<<1
- #define rs ls | 1
- #define mid ((ll+rr)>>1)
- #define pii pair<int,int>
- #define MP make_pair
- typedef long long LL;
- const long long INF = 1e18+1LL;
- const double Pi = acos(-1.0);
- const int N = 5e5+, maxn = 1e3+, mod = 1e9+, inf = 2e9;
- int vis[N],t,head[N],n,m,x,y,z,cal[N],xx[N],yy[N];
- int flag;
- struct ss{
- int to,next;}e[N * ];
- void add(int u,int v) {e[t].next = head[u]; e[t].to = v; head[u] = t++;}
- void dfs(int u,int fa) {
- cal[u] = ;
- for(int i = head[u]; i!=-; i = e[i].next) {
- int to = e[i].to;
- if(to == fa) continue;
- if(vis[u] == ) vis[u] = ;
- if(vis[to] == vis[u]) {
- flag = ;
- return ;
- }
- if(cal[to]) continue;
- if(vis[u] == ) vis[to] = ;
- else if(vis[u] == ) vis[to] = ;
- else if(vis[u] == ) vis[to] = ;
- else if(vis[u] == ) vis[to] = ;
- dfs(to,u);
- }
- }
- int main() {
- while(scanf("%d%d%d%d",&n,&m,&x,&y)!=EOF) {
- t = ;
- memset(head,-,sizeof(head));
- for(int i = ; i <= m; ++i) {
- int a,b;
- scanf("%d%d",&a,&b);
- add(a,b);
- add(b,a);
- }
- memset(cal,,sizeof(cal));
- memset(vis,,sizeof(vis));
- for(int i = ; i <= x; ++i) scanf("%d",&xx[i]),vis[xx[i]] = ;
- for(int i = ; i <= y; ++i) scanf("%d",&yy[i]),vis[yy[i]] = ;
- flag = ;
- for(int i = ; i <= x; ++i) {
- if(!cal[i]) dfs(xx[i],-);
- }
- for(int i = ; i <= y; ++i) {
- if(!cal[i]) dfs(yy[i],-);
- }
- if(flag) {
- puts("NO");
- continue;
- }
- for(int i = ; i<= n; ++i) {
- if(!cal[i]) {
- dfs(i,-);
- }
- }
- for(int i = ; i <= n; ++i) {
- if(!vis[i]) flag = ;
- }
- if(flag) puts("NO");
- else puts("YES");
- }
- return ;
- }
1001
1003题意:两堆石子,你可以任选一堆去掉任意个数,你也可从两堆中同时去掉任意个数,最后全部取完的人胜
石子的数量是10^100.高精度的威佐夫博弈,需要黄金比例精确到100位,队友javaA。
- import java.util.*;
- import java.math.*;
- public class Main {
- public static void main(String[] args) {
- Scanner cin = new Scanner(System.in);
- BigInteger k=new BigInteger("6180339887498948482045868343656381177203091798057628621354486227052604628189024497072072041893911374");
- BigInteger p=new BigInteger("10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000");
- while(cin.hasNext())
- {
- BigInteger nn=cin.nextBigInteger();
- BigInteger mm=cin.nextBigInteger();
- BigInteger n=nn.min(mm);
- BigInteger m=nn.max(mm);
- BigInteger j=n.multiply(k);
- j=j.divide(p);
- BigInteger l=j.multiply(k.add(new BigInteger("1")));
- l=l.divide(p);
- if(n.equals(l)==false)
- j=j.add(new BigInteger("1"));
- n=n.add(j);
- if(n.equals(m))
- System.out.println("0");
- else
- System.out.println("1");
- }
- }
- }
1003
1004题意:给定a,b; 求出满足 LCM(X,Y) = b && X+Y = a的一组解,或者是无解
公式转化:b*gcd(X,Y) = X*Y,X+Y=a;
我们可以知道gcd(X,Y) 必然是a的因子!,那么我们为了枚举gcd(X,Y)就直接去枚举a的因子就是了
枚举以后就相当于求解一个二元一次方程的整数解了;
- #include<bits/stdc++.h>
- using namespace std;
- #pragma comment(linker, "/STACK:102400000,102400000")
- #define ls i<<1
- #define rs ls | 1
- #define mid ((ll+rr)>>1)
- #define pii pair<int,int>
- #define MP make_pair
- typedef long long LL;
- const long long INF = 1e18+1LL;
- const double Pi = acos(-1.0);
- const int N = 5e5+, maxn = 1e3+, mod = 1e9+, inf = 2e9;
- LL a,b,p[N],ans1,ans2;
- int ok;
- int check(LL a,LL B,LL gc) {
- if(a*a - *B < ) return ;
- LL tmp = (int)(sqrt(a*a - *B)+0.00001);
- if(tmp*tmp != a*a - *B) return ;
- LL fi = a+tmp;
- if(fi>=&&fi%==) fi/=;
- else fi = -;
- LL se = a-tmp;
- if(se>=&&se%==) se/=;
- else se = -;
- if(fi <= && se <= ) return ;
- if(fi > ) {
- LL x = a - fi;
- if((__gcd(fi,x)==gc)&&x * fi == B) {
- ans1 = fi,ans2 = x;
- if(ans1>ans2)
- swap(ans1,ans2);
- ok = ;
- return ;
- }
- }
- if(se > ) {
- LL x = a - se;
- if((__gcd(x,se)==gc)&&x * se == B) {
- ans1 = se,ans2 = x;
- if(ans1>ans2)
- swap(ans1,ans2);
- ok = ;
- return ;
- }
- }
- return ;
- }
- int main() {
- while(scanf("%I64d%I64d",&a,&b)!=EOF) {
- ok = ;
- for(int i = ; i * i <= a; ++i) {
- if(a % i == ) {
- if(check(a,b*i,i)) break;
- if(check(a,b*(a/i),a/i)) break;
- }
- }
- if(ok) printf("%I64d %I64d\n",ans1,ans2);
- else puts("No Solution");
- }
- }
1004
1006题意:给你一个x,然后你要构造一个数组a,满足∑a = x, 任意的i,j( i != j) a[i] != a[j];问你 最大的 s = a1*a2*a3*......*an是多少;
要使得乘积最大,那么相乘的数越多显然S是越大的。。。。
假设x = 7, 那么我们构造出一个数组 2 3 2,到这里有重复的数了,我们就把最后面的2平分到前面 2,3 -> 3,4
假设x = 8,那么我们构造出一个数组 2 3 3,到这里有重复的数了,我们就把最后面的3平分到前面 2,3 -> 3,4 到这里,还有一个1,我们就分到最后一个数上去 -> 3 5
- #include<bits/stdc++.h>
- using namespace std;
- #pragma comment(linker, "/STACK:102400000,102400000")
- #define ls i<<1
- #define rs ls | 1
- #define mid ((ll+rr)>>1)
- #define pii pair<int,int>
- #define MP make_pair
- typedef long long ll;
- const long long INF = 1e18+1LL;
- const double Pi = acos(-1.0);
- const int N = 5e5+, maxn = 1e3+, mod = 1e9+, inf = 2e9;
- ll sum[N];
- ll pre[N];
- ll quick_pow(ll x,ll y)
- {
- ll ans=;
- while(y)
- {
- if(y&)ans*=x,ans%=mod;
- y>>=;
- x*=x;
- x%=mod;
- }
- return ans;
- }
- int main() {
- sum[]=;
- for(int i = ;i< ; ++i) {
- sum[i]=sum[i-]+i+;
- }
- int cnt=,T;
- pre[]=;
- for(int i=;i<;i++)
- {
- pre[i]=(pre[i-]*(i+))%mod;
- }
- scanf("%d",&T);
- while(T--)
- {
- ll x;
- scanf("%lld",&x);
- if(x == 1LL) {
- puts("");
- continue;
- }
- int pos=upper_bound(sum+,sum+cnt+,x)-sum-;
- ll m=x-sum[pos];
- if(m == pos+) {
- ll ans=pre[pos];
- ans=(ans*(pos+))%mod;
- ans=(ans*quick_pow(,mod-))%mod;
- printf("%lld\n",ans);
- continue;
- }
- ll ans = pre[pos - m];
- if(m!=) ans = ans * ((pre[pos+]*quick_pow((pre[pos-m+]),mod-))% mod )% mod;
- if(x==)
- printf("1\n");
- else
- printf("%lld\n",ans);
- }
- return ;
- }
1006
1007题意:一个n点n边的树,每个树节点上有一种颜色苹果最多有k个不同的颜色,问你有多少条路径至少包含了所有颜色的苹果
树分治,这里要用到状态压缩的一点技巧
- #include<bits/stdc++.h>
- using namespace std;
- #pragma comment(linker, "/STACK:102400000,102400000")
- #define ls i<<1
- #define rs ls | 1
- #define mid ((ll+rr)>>1)
- #define pii pair<int,int>
- #define MP make_pair
- typedef long long LL;
- const long long INF = 1e18+1LL;
- const double Pi = acos(-1.0);
- const int N = +, maxn = 1e3+, mod = 1e9+, inf = 2e9;
- LL ans = ;
- int n,k,t,head[N],root,a[N],f[N],vis[N],siz[N],allnode;
- LL cnt[N],num[N];
- struct edge{
- int to,next;
- }e[N * ];
- void add(int u,int v) {e[t].next = head[u]; e[t].to = v;head[u] = t++;}
- void getroot(int u,int fa) {
- f[u] = ;
- siz[u] = ;
- for(int i = head[u]; i != -; i = e[i].next) {
- int to = e[i].to;
- if(vis[to] || to == fa) continue;
- getroot(to,u);
- siz[u] += siz[to];
- f[u] = max(f[u],siz[to]);
- }
- f[u] = max(f[u],allnode - siz[u]);
- if(f[u] < f[root]) root = u;
- }
- void getdeep(int u,int fa,int now) {
- for(int i = head[u]; i != -; i = e[i].next) {
- int to = e[i].to;
- if(to == fa || vis[to]) continue;
- cnt[now|(<<a[to])]++;
- num[now|(<<a[to])]++;
- getdeep(to,u,now|(<<a[to]));
- }
- }
- LL cal(int u,int now) {
- for(int i = ; i < (<<k); ++i) cnt[i] = ,num[i] = ;
- num[now]++;
- cnt[now]++;
- getdeep(u,,now);
- for(int i = ; i < k; ++i) {
- for(int j = (<<k)-; j >= ; --j) {
- if(!((<<i)&j)) cnt[j] += cnt[j|(<<i)];
- }
- }
- LL ans1 = ;
- for(int i = ; i < (<<k); ++i) {
- ans1 += 1LL*num[i]*cnt[i^((<<k)-)];
- }
- return ans1;
- }
- void work(int u) {
- vis[u] = ;
- ans += cal(u,<<a[u]);
- for(int i = head[u]; i != -; i = e[i].next) {
- int to = e[i].to;
- if(vis[to]) continue;
- ans -= cal(to,(<<a[u])|(<<a[to]));
- allnode = siz[to];
- root = ;
- getroot(to,-);
- work(root);
- }
- }
- void init() {
- memset(head,-,sizeof(head));
- memset(vis,,sizeof(vis));
- t = ;
- ans = ;
- }
- int main() {
- while(scanf("%d%d",&n,&k)!=EOF) {
- for(int i = ; i <= n; ++i) scanf("%d",&a[i]),a[i]--;
- init();
- for(int i = ; i < n; ++i) {
- int u,v;
- scanf("%d%d",&u,&v);
- add(u,v);add(v,u);
- }
- f[] = inf;
- allnode = n;
- root = ;
- getroot(,-);
- work(root);
- printf("%I64d\n",ans);
- }
- return ;
- }
1007
1008题意:k个黑球,1个白球,每次每人只能取一球,先取到红球的人胜利,问先取的人是否为有利,或者是平等
- #include<bits/stdc++.h>
- using namespace std;
- #define ll long long
- #define pi (4*atan(1.0))
- #define eps 1e-14
- const int N=2e5+,M=4e6+,inf=1e9+,mod=1e9+;
- const ll INF=1e18+,MOD=1e9+;
- int main()
- {
- int x;
- while(~scanf("%d",&x))
- {
- if(x&)
- printf("0\n");
- else
- printf("1\n");
- }
- return ;
- }
1008
1009题意:N个角度,长度为D,求出这n个线段围成的面积
- #include<bits/stdc++.h>
- using namespace std;
- #pragma comment(linker, "/STACK:102400000,102400000")
- #define ls i<<1
- #define rs ls | 1
- #define mid ((ll+rr)>>1)
- #define pii pair<int,int>
- #define MP make_pair
- typedef long long LL;
- const long long INF = 1e18+1LL;
- const double Pi = acos(-1.0);
- const int N = 4e5+, maxn = 1e3+, mod = 1e9+, inf = 2e9;
- double d;
- int n;
- int main() {
- while(scanf("%d%lf",&n,&d)!=EOF) {
- double ans = 0.0;
- double x;
- for(int i = ; i <= n; ++i) {
- scanf("%lf",&x);
- ans += d*d*sin(x/ * Pi)/;
- }
- printf("%.3f\n",ans);
- }
- return ;
- }
1009
2016ACM/ICPC亚洲区大连站-重现赛(感谢大连海事大学)(7/10)的更多相关文章
- 2016ACM/ICPC亚洲区大连站-重现赛
题目链接:http://acm.hdu.edu.cn/search.php?field=problem&key=2016ACM%2FICPC%D1%C7%D6%DE%C7%F8%B4%F3%C ...
- 2016ACM/ICPC亚洲区大连站现场赛题解报告(转)
http://blog.csdn.net/queuelovestack/article/details/53055418 下午重现了一下大连赛区的比赛,感觉有点神奇,重现时居然改了现场赛的数据范围,原 ...
- 2016ACM/ICPC亚洲区沈阳站-重现赛赛题
今天做的沈阳站重现赛,自己还是太水,只做出两道签到题,另外两道看懂题意了,但是也没能做出来. 1. Thickest Burger Time Limit: 2000/1000 MS (Java/Oth ...
- 2016ACM/ICPC亚洲区沈阳站-重现赛
C.Recursive sequence 求ans(x),ans(1)=a,ans(2)=b,ans(n)=ans(n-2)*2+ans(n-1)+n^4 如果直接就去解...很难,毕竟不是那种可以直 ...
- 2016 ACM/ICPC亚洲区大连站-重现赛 解题报告
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=5979 按AC顺序: I - Convex Time limit 1000 ms Memory li ...
- HDU 5976 Detachment 【贪心】 (2016ACM/ICPC亚洲区大连站)
Detachment Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- HDU 5979 Convex【计算几何】 (2016ACM/ICPC亚洲区大连站)
Convex Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Subm ...
- HDU 6227.Rabbits-规律 (2017ACM/ICPC亚洲区沈阳站-重现赛(感谢东北大学))
Rabbits Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total S ...
- HDU 6225.Little Boxes-大数加法 (2017ACM/ICPC亚洲区沈阳站-重现赛(感谢东北大学))
整理代码... Little Boxes Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/O ...
随机推荐
- Django基础,Day5 - form表单投票详解
投票URL polls/urls.py: # ex: /polls/5/vote/ url(r'^(?P<question_id>[0-9]+)/vote/$', views.vote, ...
- ASP.MVC 基于AuthorizeAttribute权限设计案例
ASP.MVC上实现权限控制的方法很多,比如使用AuthorizeAttribute这个特性 1.创建自定义特性用于权限验证 public class AuthorizeDiy : Authorize ...
- jaee开发起步:tomcat服务器的配置
1.将下载下来的apache-tomcat-6.0.13.zip解压到任意文件夹. (打开tomcat官网,选择下载tomcat6.x.zip版本的tomcat不需要安装,直接解压并配置一下环境变量就 ...
- Android Studio导入第三方类库的方法
Android Studio导入第三方类库的方法 本人也刚刚开始尝试做android app的开发,听说android studio是Google支持的android 应用开发工具,所以想应该肯定比E ...
- mac gem install nokogiri error
Gem::Ext::BuildError: ERROR: Failed to build gem native extension. /Users/angela/.rbenv/versions/1.9 ...
- AJAX获取数据成功后的返回数据如何声明成全局变量
var result=""; $.ajax({ type: "post", url: "../reportRule/main.do?method=se ...
- oracle学习笔记(二)
1. Oracle字符串操作 1.1. 字符串类型 1.1.1. CHAR和VARCHAR2类型 CHAR和VARCHAR2类型都是用来表示字符串数据类型,用来在表中存放字符串信息, 比如姓名.职业. ...
- powershell例子
例子如下: $ErrorActionPreference="Stop" function getlist{ ls D:\tmp2|select name,extension,ful ...
- java问题排查总结
前些天发现:http://hellojava.info/这个站点,关于java问题排查分析总结线上故障总结其实是最有价值的,好的总结就是一个系统演进历史,是团队难得的积累沉淀. 花了不少时间看了下,顺 ...
- Redis持久化
Redis持久化 快照(默认) 将内存中的数据以快照的方式写入到二进制文件中,默认文件名是dump.rdb. 配置自动化做快照持久化(如redis在n秒内如果超过m个key被修改就自动做快照) sav ...