Description

Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph
G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'),
with the following properties:

1. V' = V.

2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted,
connected, undirected graph G = (V, E). The minimum spanning tree T =
(V, E') of G is the spanning tree that has the smallest total cost. The
total cost of T means the sum of the weights on all the edges in E'.

Input

The
first line contains a single integer t (1 <= t <= 20), the number
of test cases. Each case represents a graph. It begins with a line
containing two integers n and m (1 <= n <= 100), the number of
nodes and edges. Each of the following m lines contains a triple (xi,
yi, wi), indicating that xi and yi are connected by an edge with weight =
wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!

题意:问最小生成树是否唯一。

分析:求次小生成树,推断次小生成树和最小生成树是否相等。

求次小生成树的步骤:

(1)先用Prime求出最小生成树MST,在Prime的同一时候用一个矩阵mmax[ ][ ]记录在MST中连接随意两点u,v的唯一路径中权

值最大的那条边的权值。做法:Prime是每次添加一个节点t。用该点新加入MST的边与它前一个加入MST的点的mmax的值做比较。

(2)枚举最小生成树以外的边,并删除该边所在环上权值最大的边。

(3)取得的全部生成树中权值最小的一棵即为所求。

算法的时间复杂度为O(n^2)。

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
#define maxn 111
#define inf 0x3f3f3f3f int map[maxn][maxn],mmax[maxn][maxn];//map邻接矩阵存图,mmax示最小生成树中i到j的最大边权
bool used[maxn][maxn];//判断该边是否加入最小生成树
int pre[maxn],dis[maxn];//pre用于mmax的构建,装前一个放入MST的结点,dis用于构建MST void init(int n)
{
for (int i=;i<=n;i++)//图初始化
{
for (int j=;j<=n;j++)
{
if (i==j)
{
map[i][j]=;
}
else
{
map[i][j]=inf;
}
}
}
} void read(int m)
{
int u,v,w;
for (int i=;i<m;i++)//读入图
{
scanf("%d%d%d",&u,&v,&w);
map[u][v]=map[v][u]=w;
}
}
int prime(int n)//构建MST
{
int ans=;
bool vis[maxn];
memset(vis,false,sizeof(vis));
memset(used,false,sizeof(used));
memset(mmax,,sizeof(mmax));
for (int i=;i<=n;i++)
{
dis[i]=map[][i];
pre[i]=;//1点为第一个放入MST的点,先设为所有点的前驱结点
}
pre[]=;
dis[]=;
vis[]=true;
for (int i=;i<=n;i++)
{
int min_dis=inf,k;
for (int j=;j<=n;j++)
{
if (vis[j]==&&min_dis>dis[j])
{
min_dis=dis[j];
k=j;
}
}
if (min_dis==inf)//如果不存在最小生成树
{
return -;
}
ans+=min_dis;
vis[k]=true;
used[k][pre[k]]=used[pre[k]][k]=true;//标记为放入MST的点
for (int j=;j<=n;j++)
{
if (vis[j])
{
mmax[j][k]=mmax[k][j]=max(mmax[j][pre[k]],dis[k]);//最小生成树环的最大边
}
if (!vis[j]&&dis[j]>map[k][j])
{
dis[j]=map[k][j];
pre[j]=k;
}
}
}
return ans;//最小生成树的权值之和
}
int smst(int n,int min_ans)//min_ans 是最小生成树的权值和
{
int ans=inf;
for (int i=;i<=n;i++)//枚举最小生成树之外的边
{
for (int j=i+;j<=n;j++)
{
if (map[i][j]!=inf&&!used[i][j])
{
ans=min(ans,min_ans+map[i][j]-mmax[i][j]);//该边次小MST的权值为MST加上该边再减去该边所在环的最大MST边
}
}
}
if (ans==inf)
{
return -;
}
return ans;
}
void solve(int n)
{
int ans=prime(n);
if (ans==-)
{
puts("Not Unique!");
return;
}
if (smst(n,ans)==ans)//次小MST权值等于MST说明MST不唯一
{
printf("Not Unique!\n");
}
else
{
printf("%d\n",ans);
}
}
int main()
{
int t,n,m; scanf("%d",&t);
while (t--)
{
scanf("%d%d",&n,&m);
init(n);
read(m);
solve(n);
} return ;
}

POJ_1679_The Unique MST(次小生成树)的更多相关文章

  1. POJ_1679_The Unique MST(次小生成树模板)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23942   Accepted: 8492 D ...

  2. POJ1679 The Unique MST[次小生成树]

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28673   Accepted: 10239 ...

  3. POJ 1679 The Unique MST (次小生成树 判断最小生成树是否唯一)

    题目链接 Description Given a connected undirected graph, tell if its minimum spanning tree is unique. De ...

  4. POJ1679 The Unique MST —— 次小生成树

    题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total S ...

  5. POJ-1679 The Unique MST,次小生成树模板题

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K       Description Given a connected undirec ...

  6. POJ 1679 The Unique MST (次小生成树)

    题目链接:http://poj.org/problem?id=1679 有t组数据,给你n个点,m条边,求是否存在相同权值的最小生成树(次小生成树的权值大小等于最小生成树). 先求出最小生成树的大小, ...

  7. poj1679The Unique MST(次小生成树模板)

    次小生成树模板,别忘了判定不存在最小生成树的情况 #include <iostream> #include <cstdio> #include <cstring> ...

  8. POJ 1679 The Unique MST (次小生成树kruskal算法)

    The Unique MST 时间限制: 10 Sec  内存限制: 128 MB提交: 25  解决: 10[提交][状态][讨论版] 题目描述 Given a connected undirect ...

  9. poj 1679 The Unique MST (次小生成树(sec_mst)【kruskal】)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 35999   Accepted: 13145 ...

随机推荐

  1. 【深入理解JAVA虚拟机】读后感

    收获颇多的一本书,非常值得细细品味. 1.所谓万变不离其宗,此书便是宗.读过此书后,发现以前看过的网上好多五花八门的文章,都是源自此书. 2.举一反三.此书中讲到的jvm用到的各种思想,在工作中其实经 ...

  2. 36、XmlReader与 XMLWriter(抽象类)

    一.概述 XMLReader为抽象类,其派生类有:XmlDictionaryReader.XmlNodeReader.XmlTextReader(与IO命名空间中的TextReader对象一起使用). ...

  3. codeforces 407C Curious Array

    codeforces 407C Curious Array UPD: 我觉得这个做法比较好理解啊 参考题解:https://www.cnblogs.com/ChopsticksAN/p/4908377 ...

  4. JavaScript --- Map集合结构详解

    Map 对象保存键值对.任何值(对象或者原始值) 都可以作为一个键或一个值. 语法 new Map([iterable]) 参数 iterable Iterable 可以是一个数组或者其他 itera ...

  5. jq封装-无缝滚动效果

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  6. spring的权限控制,过滤器

    spring的过滤器可以实现登录状态问题 1.创建一个AccessFilter类,基础代码 package com.ujia.util.access; import javax.servlet.htt ...

  7. 2018-2019-2 网络对抗技术 20165322 Exp3 免杀原理与实践

    2018-2019-2 网络对抗技术 20165322 Exp3 免杀原理与实践 目录 实验内容与步骤 正确使用msf编码器,msfvenom生成如jar之类的其他文件,veil-evasion,加壳 ...

  8. Kali-linux破解纯文本密码工具mimikatz

    mimikatz是一款强大的系统密码破解获取工具.该工具有段时间是作为一个独立程序运行.现在已被添加到Metasploit框架中,并作为一个可加载的Meterpreter模块.当成功的获取到一个远程会 ...

  9. python 怎样构造字典格式的数据

    #dict()函数的使用 第一种方法l=[('name','xueli'),('age',12)]dd1=dict(l)print dd1#{'age': 12, 'name': 'xueli'} 第 ...

  10. SpringBoot 默认日志

    默认使用的这个类 org.apache.commons.logging.Log import org.apache.commons.logging.Log; import org.apache.com ...