Spark 的shuffle 服务是spark的核心,本文介绍了非ExternalShuffleClient的方式,看BlockService的整个架构。ShuffleClient是整个框架的基础,有init方法和fetchBlock两个方法。

/** Provides an interface for reading shuffle files, either from an Executor or external service. */
public abstract class ShuffleClient implements Closeable { /**
* Initializes the ShuffleClient, specifying this Executor's appId.
* Must be called before any other method on the ShuffleClient.
* 初始化ShuffleClient, 传入本执行器的程序ID,本方法必须在访问ShuffleClient的其它方法前调用。
*/
public void init(String appId) { } /**
* Fetch a sequence of blocks from a remote node asynchronously,
*
* Note that this API takes a sequence so the implementation can batch requests, and does not
* return a future so the underlying implementation can invoke onBlockFetchSuccess as soon as
* the data of a block is fetched, rather than waiting for all blocks to be fetched.
* 异步的从远程结点取一系列的数据块,并且不返回future对象,所以当取到一个数据块的数据时,底层的实现可以调用onBlockFetchSuccess方法,
* 并不用等所有的数据块都取完。
*/
public abstract void fetchBlocks(
String host,
int port,
String execId,
String[] blockIds,
BlockFetchingListener listener);
}

BlockFetchingListener接口,onBlockFetchSuccess方法:每次成功取得一个数据块时调用。当本方法返回时,数据必须被自动释放。 如果数据被传递给另一个线程,接收者必须自己调用retain()和release(),或者拷贝数据到一个新的缓冲区。onBlockFetchFailure方法,数据块获取失败时,至少被调用一次。

public interface BlockFetchingListener extends EventListener {
/**
* Called once per successfully fetched block. After this call returns, data will be released
* automatically. If the data will be passed to another thread, the receiver should retain()
* and release() the buffer on their own, or copy the data to a new buffer.
*/
void onBlockFetchSuccess(String blockId, ManagedBuffer data); /**
* Called at least once per block upon failures.
*/
void onBlockFetchFailure(String blockId, Throwable exception);
}

BlockTransferService扩展了ShuffleClient,有一些方法的公共的实现。

private[spark]
abstract class BlockTransferService extends ShuffleClient with Closeable with Logging { /**
* Initialize the transfer service by giving it the BlockDataManager that can be used to fetch
* local blocks or put local blocks.
* 通过传递给他BlockDataManager对象来初始化传输服务,BlockDataManager可以用来存取本地数据块。
*/
def init(blockDataManager: BlockDataManager): Unit /**
* Tear down the transfer service.
* 关闭传输服务。
*/
def close(): Unit /**
* Port number the service is listening on, available only after [[init]] is invoked.
* 传输服务所在的端口号,在调用init方法后可用。
*/
def port: Int /**
* Host name the service is listening on, available only after [[init]] is invoked.
* 传输服务所在的主机名,在调用init方法后可用。
*/
def hostName: String /**
* Fetch a sequence of blocks from a remote node asynchronously,
* available only after [[init]] is invoked.
*
* Note that this API takes a sequence so the implementation can batch requests, and does not
* return a future so the underlying implementation can invoke onBlockFetchSuccess as soon as
* the data of a block is fetched, rather than waiting for all blocks to be fetched.
*
* 异步的从远程结点取一系列的数据块,,仅在调用init方法后可用。
* 注意本API用一个序列,所以实现可以使用批量请求,并且不返回future对象,所以当取到一个数据块的数据时,底层的实现可以调用onBlockFetchSuccess方法,
* 并不用等所有的数据块都取完。
*/ override def fetchBlocks( host: String, port: Int, execId: String, blockIds: Array[String], listener: BlockFetchingListener): Unit /**
  * Upload a single block to a remote node, available only after [[init]] is invoked.
* 上传一个数据块到远程结点,仅在调用init方法后可用。
*/
def uploadBlock(
hostname: String,
port: Int,
execId: String,
blockId: BlockId,
blockData: ManagedBuffer,
level: StorageLevel,
classTag: ClassTag[_]): Future[Unit] /**
* A special case of [[fetchBlocks]], as it fetches only one block and is blocking.
*
* It is also only available after [[init]] is invoked.
* fetchBlocks的一个特别方法,他只取一个数据块并且阻塞,仅在调用init方法后可用。

*/
def fetchBlockSync(host: String, port: Int, execId: String, blockId: String): ManagedBuffer = {
// A monitor for the thread to wait on.
val result = Promise[ManagedBuffer]()
fetchBlocks(host, port, execId, Array(blockId),
new BlockFetchingListener {
override def onBlockFetchFailure(blockId: String, exception: Throwable): Unit = {
result.failure(exception)
}
override def onBlockFetchSuccess(blockId: String, data: ManagedBuffer): Unit = {
val ret = ByteBuffer.allocate(data.size.toInt)
ret.put(data.nioByteBuffer())
ret.flip()
result.success(new NioManagedBuffer(ret))
}
})
ThreadUtils.awaitResult(result.future, Duration.Inf)
} /**
* Upload a single block to a remote node, available only after [[init]] is invoked.
*
* This method is similar to [[uploadBlock]], except this one blocks the thread
* until the upload finishes.
* 上传一个数据块到远程结点,仅在调用init方法后可用。
* 这个方法和uploadBlock方法类似,除了直到上传结点,本方法会一直阻塞。
*/
def uploadBlockSync(
hostname: String,
port: Int,
execId: String,
blockId: BlockId,
blockData: ManagedBuffer,
level: StorageLevel,
classTag: ClassTag[_]): Unit = {
val future = uploadBlock(hostname, port, execId, blockId, blockData, level, classTag)
ThreadUtils.awaitResult(future, Duration.Inf)
}
}

NettyBlockTransferService扩展了BlockTransferServie

Spark2.0 shuffle service的更多相关文章

  1. hadoop-2.7.3.tar.gz + spark-2.0.2-bin-hadoop2.7.tgz + zeppelin-0.6.2-incubating-bin-all.tgz(master、slave1和slave2)(博主推荐)(图文详解)

    不多说,直接上干货! 我这里,采取的是ubuntu 16.04系统,当然大家也可以在CentOS6.5里,这些都是小事 CentOS 6.5的安装详解 hadoop-2.6.0.tar.gz + sp ...

  2. Ubuntu14.04或16.04下安装JDK1.8+Scala+Hadoop2.7.3+Spark2.0.2

    为了将Hadoop和Spark的安装简单化,今日写下此帖. 首先,要看手头有多少机器,要安装伪分布式的Hadoop+Spark还是完全分布式的,这里分别记录. 1. 伪分布式安装 伪分布式的Hadoo ...

  3. 图文解析Spark2.0核心技术(转载)

    导语 Spark2.0于2016-07-27正式发布,伴随着更简单.更快速.更智慧的新特性,spark 已经逐步替代 hadoop 在大数据中的地位,成为大数据处理的主流标准.本文主要以代码和绘图的方 ...

  4. Spark2.0机器学习系列之1: 聚类算法(LDA)

    在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法:      (1)K-means      (2)Latent Dirichlet allocation (LDA)  ...

  5. 在centos7上安装部署hadoop2.7.3和spark2.0.0

    一.安装装备 下载安装包: vmware workstations pro 12 三台centos7.1 mini 虚拟机 网络配置NAT网络如下: 二.创建hadoop用户和hadoop用户组 1. ...

  6. hive on spark (spark2.0.0 hive2.3.3)

    hive on spark真的很折腾人啊!!!!!!! 一.软件准备阶段 maven3.3.9 spark2.0.0 hive2.3.3 hadoop2.7.6 二.下载源码spark2.0.0,编译 ...

  7. Spark2.0集成Hive操作的相关配置与注意事项

    前言 已完成安装Apache Hive,具体安装步骤请参照,Linux基于Hadoop2.8.0集群安装配置Hive2.1.1及基础操作 补充说明 Hive中metastore(元数据存储)的三种方式 ...

  8. 降本增效利器!趣头条Spark Remote Shuffle Service最佳实践

    王振华,趣头条大数据总监,趣头条大数据负责人 曹佳清,趣头条大数据离线团队高级研发工程师,曾就职于饿了么大数据INF团队负责存储层和计算层组件研发,目前负责趣头条大数据计算层组件Spark的建设 范振 ...

  9. Magnet: Push-based Shuffle Service for Large-scale Data Processing

    本文是阅读 LinkedIn 公司2020年发表的论文 Magnet: Push-based Shuffle Service for Large-scale Data Processing 一点笔记. ...

随机推荐

  1. windows上SVN图标不显示

    症状1:项目左侧导航栏表不能正常显示图标 方法:windows->preferences->General->Appearance->Label Decorations    ...

  2. 使用Git Hooks实现开发部署任务自动化

    前言 版本控制,这是现代软件开发的核心需求之一.有了它,软件项目可以安全的跟踪代码变更并执行回溯.完整性检查.协同开发等多种操作.在各种版本控制软件中,git是近年来最流行的软件之一,它的去中心化架构 ...

  3. ZooKeeper(六)-- CAP和BASE理论、ZAB协议

    一.CAP理论和BASE理论 1.CAP理论 CAP理论,指的是在一个分布式系统中,不可能同时满足Consistency(一致性). Availability(可用性).Partition toler ...

  4. 关于MCU的烧录,下载与其他接口的比较(二)

    单片机应用系统由硬件和软件组成,软件的载体是硬件的程序存储器,程序存储器采用只读存储器,这种存储器在电源关闭后,仍能保存程序,在系统上电后,CPU可取出这些指令重新执行.只读存储器(Read Only ...

  5. 用示例详解php连接数据库操作

    首先数据库mydb有三个表: 1  info表 2  users表 3  sname表 首先先做一个登录主页面 login_1.php <!DOCTYPE html PUBLIC "- ...

  6. HTTP/2探索第一篇——概念

    版权声明:本文由张浩然原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/87 来源:腾云阁 https://www.qclou ...

  7. Android 获取系统默认输入法

    import android.provider.Settings; import android.text.TextUtils; 获取默认输入法包名: private String getDefaul ...

  8. 【BZOJ4372】烁烁的游戏 动态树分治+线段树

    [BZOJ4372]烁烁的游戏 Description 背景:烁烁很喜欢爬树,这吓坏了树上的皮皮鼠.题意:给定一颗n个节点的树,边权均为1,初始树上没有皮皮鼠.烁烁他每次会跳到一个节点u,把周围与他距 ...

  9. 【BZOJ4774/4006】修路/[JLOI2015]管道连接 斯坦纳树

    [BZOJ4774]修路 Description 村子间的小路年久失修,为了保障村子之间的往来,法珞决定带领大家修路.对于边带权的无向图 G = (V, E),请选择一些边,使得1 <= i & ...

  10. 边的双联通+缩点+LCA(HDU3686)

    Traffic Real Time Query System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...