sigmoid:

Relu:

为什么通常Relu比sigmoid和tanh强,有什么不同?
主要是因为它们gradient特性不同。

1.sigmoid和tanh的gradient在饱和区域非常平缓,接近于0,很容易造成vanishing gradient的问题,减缓收敛速度。vanishing gradient在网络层数多的时候尤其明显,是加深网络结构的主要障碍之一。相反,Relu的gradient大多数情况下是常数,有助于解决深层网络的收敛问题。

2.Relu的另一个优势是在生物上的合理性,它是单边的,相比sigmoid和tanh,更符合生物神经元的特征
3.而提出sigmoid和tanh,主要是因为它们全程可导。还有表达区间问题,sigmoid和tanh区间是0到1,或着-1到1,在表达上,尤其是输出层的表达上有优势。

4.Relu输出更具稀疏性。

5.ReLU更容易学习优化。因为其分段线性性质,导致其前传,后传,求导都是分段线性。而传统的sigmoid函数,由于两端饱和,在传播过程中容易丢弃信息:

第一个问题:为什么引入非线性激励函数?
如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了。
正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络就有意义了(不再是输入的线性组合,可以逼近任意函数)。最早的想法是sigmoid函数或者tanh函数,输出有界,很容易充当下一层输入(以及一些人的生物解释balabala)。
第二个问题:为什么引入Relu呢?
第一,采用sigmoid等函数,算激活函数时(指数运算),计算量大,反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多
第二,对于深层网络,sigmoid函数反向传播时,很容易就会出现梯度消失的情况(在sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失,参见 @Haofeng Li 答案的第三点),从而无法完成深层网络的训练。
第三,Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生(以及一些人的生物解释balabala)。

当然现在也有一些对relu的改进,比如prelu,random relu等,在不同的数据集上会有一些训练速度上或者准确率上的改进,具体的大家可以找相关的paper看。
多加一句,现在主流的做法,会在做完relu之后,加一步batch normalization,尽可能保证每一层网络的输入具有相同的分布[1]。而最新的paper[2],他们在加入bypass connection之后,发现改变batch normalization的位置会有更好的效果。大家有兴趣可以看下。

深度学习(十六) ReLU为什么比Sigmoid效果好的更多相关文章

  1. 推荐系统遇上深度学习(十)--GBDT+LR融合方案实战

    推荐系统遇上深度学习(十)--GBDT+LR融合方案实战 0.8012018.05.19 16:17:18字数 2068阅读 22568 推荐系统遇上深度学习系列:推荐系统遇上深度学习(一)--FM模 ...

  2. 对比深度学习十大框架:TensorFlow 并非最好?

    http://www.oschina.net/news/80593/deep-learning-frameworks-a-review-before-finishing-2016 TensorFlow ...

  3. 强化学习(十六) 深度确定性策略梯度(DDPG)

    在强化学习(十五) A3C中,我们讨论了使用多线程的方法来解决Actor-Critic难收敛的问题,今天我们不使用多线程,而是使用和DDQN类似的方法:即经验回放和双网络的方法来改进Actor-Cri ...

  4. 深度学习(六)keras常用函数学习

    原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9769301.html Keras是什么? Keras:基于Theano和TensorFlow的 ...

  5. 深度学习之逻辑回归的实现 -- sigmoid

    1 什么是逻辑回归 1.1逻辑回归与线性回归的区别: 线性回归预测的是一个连续的值,不论是单变量还是多变量(比如多层感知器),他都返回的是一个连续的值,放在图中就是条连续的曲线,他常用来表示的数学方法 ...

  6. 《神经网络和深度学习》系列文章三:sigmoid神经元

    出处: Michael Nielsen的<Neural Network and Deep Leraning>,点击末尾“阅读原文”即可查看英文原文. 本节译者:哈工大SCIR硕士生 徐伟 ...

  7. SIGAI深度学习第六集 受限玻尔兹曼机

    讲授玻尔兹曼分布.玻尔兹曼机的网络结构.实际应用.训练算法.深度玻尔兹曼机等.受限玻尔兹曼机(RBM)是一种概率型的神经网络.和其他神经网络的区别:神经网络的输出是确定的,而RBM的神经元的输出值是不 ...

  8. Tensorflow2 深度学习十必知

    博主根据自身多年的深度学习算法研发经验,整理分享以下十条必知. 含参考资料链接,部分附上相关代码实现. 独乐乐不如众乐乐,希望对各位看客有所帮助. 待回头有时间再展开细节说一说深度学习里的那些道道. ...

  9. 深度学习基础系列(三)| sigmoid、tanh和relu激活函数的直观解释

    常见的激活函数有sigmoid.tanh和relu三种非线性函数,其数学表达式分别为: sigmoid: y = 1/(1 + e-x) tanh: y = (ex - e-x)/(ex + e-x) ...

随机推荐

  1. 机器学习—集成学习(GBDT)

    一.原理部分: 图片形式~ 二.sklearn实现: 可以看看这个:https://blog.csdn.net/han_xiaoyang/article/details/52663170 1.分类: ...

  2. AndroidStudio-Error Loading Project: Cannot load 3 facets

    Error Loading Project: Cannot load 3 facets 解决方法,在 File-->Settings-->Plugins-----> 勾选 Andro ...

  3. 学习python的第五天

    4.30自我总结 一复习 1.查看数据类型 #数值10的位置 print(di(10)) #数值10的样式 print(type(10)) 2.关于变量的一些补充 a=1 b=1 c=1 #a,b,c ...

  4. Tempdb--查看tempdb使用的脚本

    GO /****** Object: StoredProcedure [dbo].[usp_GetTempDBUsedSpace] Script Date: 03/05/2014 13:24:42 * ...

  5. Session如何保存在sql数据库中

    aspnet中,session默认以inproc模式存储,也就是保存在iis进程中,这样有个优点就是效率高,但不利于为本负载均衡扩展.可以把session信息保存在SQL Server中,据说,该种方 ...

  6. VUE 学习笔记 四 计算属性和监听器

    1.计算属性 对于任何复杂逻辑,你都应当使用计算属性 <div id="example"> <p>Original message: "{{ me ...

  7. HTML 属性绑定

  8. cesium随笔 — 隐藏三维场景下方版权信息

    上图中的版权信息相信很多人都想去掉,那么下面我将介绍一种简单粗暴的方法将其隐藏起来: .cesium-widget-credits { display: none!important; visibil ...

  9. WPF自定义ComboBox

    <ControlTemplate x:Key="ComboBoxTextBox" TargetType="{x:Type TextBox}"> &l ...

  10. sql数据库 大小查询

    select * from sys.master_files where name='CODA_PRD_Catalog' 12416*8/1024=(m)