为什么会有TCP/IP协议

在世界上各地,各种各样的电脑运行着各自不同的操作系统为大家服务,这些电脑在表达同一种信息的时候所使用的方法是千差万别。就好像圣经中上帝打乱了各地人的口音,让他们无法合作一样。计算机使用者意识到,计算机只是单兵作战并不会发挥太大的作用。只有把它们联合起来,电脑才会发挥出它最大的潜力。于是人们就想方设法的用电线把电脑连接到了一起。

但是简单的连到一起是远远不够的,就好像语言不同的两个人互相见了面,完全不能交流信息。因而他们需要定义一些共通的东西来进行交流,TCP/IP就是为此而生。TCP/IP不是一个协议,而是一个协议族的统称。里面包括了IP协议,IMCP协议,TCP协议,以及我们更加熟悉的http、ftp、pop3协议等等。电脑有了这些,就好像学会了外语一样,就可以和其他的计算机终端做自由的交流了。

TCP/IP协议分层

![TCP分层2.jpg](//upload-images.jianshu.io/upload_images/2964446-94da7e7442050d15.jpg?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

TCP/IP协议族按照层次由上到下,层层包装。

应用层:
向用户提供一组常用的应用程序,比如电子邮件、文件传输访问、远程登录等。远程登录TELNET使用TELNET协议提供在网络其它主机上注册的接口。TELNET会话提供了基于字符的虚拟终端。文件传输访问FTP使用FTP协议来提供网络内机器间的文件拷贝功能。

传输层:
提供应用程序间的通信。其功能包括:一、格式化信息流;二、提供可靠传输。为实现后者,传输层协议规定接收端必须发回确认,并且假如分组丢失,必须重新发送。

网络层 :
负责相邻计算机之间的通信。其功能包括三方面。
一、处理来自传输层的分组发送请求,收到请求后,将分组装入IP数据报,填充报头,选择去往信宿机的路径,然后将数据报发往适当的网络接口。

二、处理输入数据报:首先检查其合法性,然后进行寻径--假如该数据报已到达信宿机,则去掉报头,将剩下部分交给适当的传输协议;假如该数据报尚未到达信宿,则转发该数据报。

三、处理路径、流控、拥塞等问题。

网络接口层
这是TCP/IP软件的最低层,负责接收IP数据报并通过网络发送之,或者从网络上接收物理帧,抽出IP数据报,交给IP层。

IP 是无连接的

IP 用于计算机之间的通信。

IP 是无连接的通信协议。它不会占用两个正在通信的计算机之间的通信线路。这样,IP 就降低了对网络线路的需求。每条线可以同时满足许多不同的计算机之间的通信需要。

通过 IP,消息(或者其他数据)被分割为小的独立的包,并通过因特网在计算机之间传送。

IP 负责将每个包路由至它的目的地。

IP地址

每个计算机必须有一个 IP 地址才能够连入因特网。

每个 IP 包必须有一个地址才能够发送到另一台计算机。

网络上每一个节点都必须有一个独立的Internet地址(也叫做IP地址)。现在,通常使用的IP地址是一个32bit的数字,也就是我们常说的IPv4标准,这32bit的数字分成四组,也就是常见的255.255.255.255的样式。IPv4标准上,地址被分为五类,我们常用的是B类地址。具体的分类请参考其他文档。需要注意的是IP地址是网络号+主机号的组合,这非常重要。

CP/IP 使用 32 个比特来编址。一个计算机字节是 8 比特。所以 TCP/IP 使用了 4 个字节。
一个计算机字节可以包含 256 个不同的值:
00000000、00000001、00000010、00000011、00000100、00000101、00000110、00000111、00001000 ....... 直到 11111111。
现在,你知道了为什么 TCP/IP 地址是介于 0 到 255 之间的 4 个数字。

TCP 使用固定的连接

TCP 用于应用程序之间的通信。

当应用程序希望通过 TCP 与另一个应用程序通信时,它会发送一个通信请求。这个请求必须被送到一个确切的地址。在双方“握手”之后,TCP 将在两个应用程序之间建立一个全双工 (full-duplex) 的通信。

这个全双工的通信将占用两个计算机之间的通信线路,直到它被一方或双方关闭为止。

UDP 和 TCP 很相似,但是更简单,同时可靠性低于 TCP。

IP 路由器

当一个 IP 包从一台计算机被发送,它会到达一个 IP 路由器。

IP 路由器负责将这个包路由至它的目的地,直接地或者通过其他的路由器。

在一个相同的通信中,一个包所经由的路径可能会和其他的包不同。而路由器负责根据通信量、网络中的错误或者其他参数来进行正确地寻址。

域名

12 个阿拉伯数字很难记忆。使用一个名称更容易。

用于 TCP/IP 地址的名字被称为域名。w3school.com.cn 就是一个域名。

当你键入一个像 http://www.w3school.com.cn 这样的域名,域名会被一种 DNS 程序翻译为数字。

在全世界,数量庞大的 DNS 服务器被连入因特网。DNS 服务器负责将域名翻译为 TCP/IP 地址,同时负责使用新的域名信息更新彼此的系统。

当一个新的域名连同其 TCP/IP 地址一同注册后,全世界的 DNS 服务器都会对此信息进行更新。

TCP/IP

TCP/IP 意味着 TCP 和 IP 在一起协同工作。

TCP 负责应用软件(比如你的浏览器)和网络软件之间的通信。

IP 负责计算机之间的通信。

TCP 负责将数据分割并装入 IP 包,然后在它们到达的时候重新组合它们。

IP 负责将包发送至接受者。

TCP报文格式

TCP报文格式1.jpg

16位源端口号:16位的源端口中包含初始化通信的端口。源端口和源IP地址的作用是标识报文的返回地址。

16位目的端口号:16位的目的端口域定义传输的目的。这个端口指明报文接收计算机上的应用程序地址接口。

32位序号:32位的序列号由接收端计算机使用,重新分段的报文成最初形式。当SYN出现,序列码实际上是初始序列码(Initial Sequence Number,ISN),而第一个数据字节是ISN+1。这个序列号(序列码)可用来补偿传输中的不一致。

32位确认序号:32位的序列号由接收端计算机使用,重组分段的报文成最初形式。如果设置了ACK控制位,这个值表示一个准备接收的包的序列码。

4位首部长度:4位包括TCP头大小,指示何处数据开始。

保留(6位):6位值域,这些位必须是0。为了将来定义新的用途而保留。

标志:6位标志域。表示为:紧急标志、有意义的应答标志、推、重置连接标志、同步序列号标志、完成发送数据标志。按照顺序排列是:URG、ACK、PSH、RST、SYN、FIN。

16位窗口大小:用来表示想收到的每个TCP数据段的大小。TCP的流量控制由连接的每一端通过声明的窗口大小来提供。窗口大小为字节数,起始于确认序号字段指明的值,这个值是接收端正期望接收的字节。窗口大小是一个16字节字段,因而窗口大小最大为65535字节。

16位校验和:16位TCP头。源机器基于数据内容计算一个数值,收信息机要与源机器数值 结果完全一样,从而证明数据的有效性。检验和覆盖了整个的TCP报文段:这是一个强制性的字段,一定是由发送端计算和存储,并由接收端进行验证的。

16位紧急指针:指向后面是优先数据的字节,在URG标志设置了时才有效。如果URG标志没有被设置,紧急域作为填充。加快处理标示为紧急的数据段。

选项:长度不定,但长度必须为1个字节。如果没有选项就表示这个1字节的域等于0。

数据:该TCP协议包负载的数据。

在上述字段中,6位标志域的各个选项功能如下。

URG:紧急标志。紧急标志为"1"表明该位有效。

ACK:确认标志。表明确认编号栏有效。大多数情况下该标志位是置位的。TCP报头内的确认编号栏内包含的确认编号(w+1)为下一个预期的序列编号,同时提示远端系统已经成功接收所有数据。

PSH:推标志。该标志置位时,接收端不将该数据进行队列处理,而是尽可能快地将数据转由应用处理。在处理Telnet或rlogin等交互模式的连接时,该标志总是置位的。

RST:复位标志。用于复位相应的TCP连接。

SYN:同步标志。表明同步序列编号栏有效。该标志仅在三次握手建立TCP连接时有效。它提示TCP连接的服务端检查序列编号,该序列编号为TCP连接初始端(一般是客户端)的初始序列编号。在这里,可以把TCP序列编号看作是一个范围从0到4,294,967,295的32位计数器。通过TCP连接交换的数据中每一个字节都经过序列编号。在TCP报头中的序列编号栏包括了TCP分段中第一个字节的序列编号。

FIN:结束标志。

TCP三次握手

所谓三次握手(Three-Way Handshake)即建立TCP连接,就是指建立一个TCP连接时,需要客户端和服务端总共发送3个包以确认连接的建立。在socket编程中,这一过程由客户端执行connect来触发,整个流程如下图所示:

TCP三次握手.png

(1)第一次握手:Client将标志位SYN置为1,随机产生一个值seq=J,并将该数据包发送给Server,Client进入SYN_SENT状态,等待Server确认。

(2)第二次握手:Server收到数据包后由标志位SYN=1知道Client请求建立连接,Server将标志位SYN和ACK都置为1,ack=J+1,随机产生一个值seq=K,并将该数据包发送给Client以确认连接请求,Server进入SYN_RCVD状态。

(3)第三次握手:Client收到确认后,检查ack是否为J+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=K+1,并将该数据包发送给Server,Server检查ack是否为K+1,ACK是否为1,如果正确则连接建立成功,Client和Server进入ESTABLISHED状态,完成三次握手,随后Client与Server之间可以开始传输数据了。

简单来说,就是

1、建立连接时,客户端发送SYN包(SYN=i)到服务器,并进入到SYN-SEND状态,等待服务器确认

2、服务器收到SYN包,必须确认客户的SYN(ack=i+1),同时自己也发送一个SYN包(SYN=k),即SYN+ACK包,此时服务器进入SYN-RECV状态

3、客户端收到服务器的SYN+ACK包,向服务器发送确认报ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手,客户端与服务器开始传送数据。

SYN攻击

在三次握手过程中,Server发送SYN-ACK之后,收到Client的ACK之前的TCP连接称为半连接(half-open connect),此时Server处于SYN_RCVD状态,当收到ACK后,Server转入ESTABLISHED状态。SYN攻击就是Client在短时间内伪造大量不存在的IP地址,并向Server不断地发送SYN包,Server回复确认包,并等待Client的确认,由于源地址是不存在的,因此,Server需要不断重发直至超时,这些伪造的SYN包将产时间占用未连接队列,导致正常的SYN请求因为队列满而被丢弃,从而引起网络堵塞甚至系统瘫痪。SYN攻击时一种典型的DDOS攻击,检测SYN攻击的方式非常简单,即当Server上有大量半连接状态且源IP地址是随机的,则可以断定遭到SYN攻击了,使用如下命令可以让之现行:

#netstat -nap | grep SYN_RECV

TCP四次挥手

所谓四次挥手(Four-Way Wavehand)即终止TCP连接,就是指断开一个TCP连接时,需要客户端和服务端总共发送4个包以确认连接的断开。在socket编程中,这一过程由客户端或服务端任一方执行close来触发,整个流程如下图所示:

TCP四次挥手.png

由于TCP连接时全双工的,因此,每个方向都必须要单独进行关闭,这一原则是当一方完成数据发送任务后,发送一个FIN来终止这一方向的连接,收到一个FIN只是意味着这一方向上没有数据流动了,即不会再收到数据了,但是在这个TCP连接上仍然能够发送数据,直到这一方向也发送了FIN。首先进行关闭的一方将执行主动关闭,而另一方则执行被动关闭,上图描述的即是如此。

(1)第一次挥手:Client发送一个FIN,用来关闭Client到Server的数据传送,Client进入FIN_WAIT_1状态。

(2)第二次挥手:Server收到FIN后,发送一个ACK给Client,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),Server进入CLOSE_WAIT状态。

(3)第三次挥手:Server发送一个FIN,用来关闭Server到Client的数据传送,Server进入LAST_ACK状态。

(4)第四次挥手:Client收到FIN后,Client进入TIME_WAIT状态,接着发送一个ACK给Server,确认序号为收到序号+1,Server进入CLOSED状态,完成四次挥手。

为什么建立连接是三次握手,而关闭连接却是四次挥手呢?

这是因为服务端在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。而关闭连接时,当收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,己方也未必全部数据都发送给对方了,所以己方可以立即close,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送。

为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

原因有二:
一、保证TCP协议的全双工连接能够可靠关闭
二、保证这次连接的重复数据段从网络中消失

先说第一点,如果Client直接CLOSED了,那么由于IP协议的不可靠性或者是其它网络原因,导致Server没有收到Client最后回复的ACK。那么Server就会在超时之后继续发送FIN,此时由于Client已经CLOSED了,就找不到与重发的FIN对应的连接,最后Server就会收到RST而不是ACK,Server就会以为是连接错误把问题报告给高层。这样的情况虽然不会造成数据丢失,但是却导致TCP协议不符合可靠连接的要求。所以,Client不是直接进入CLOSED,而是要保持TIME_WAIT,当再次收到FIN的时候,能够保证对方收到ACK,最后正确的关闭连接。

再说第二点,如果Client直接CLOSED,然后又再向Server发起一个新连接,我们不能保证这个新连接与刚关闭的连接的端口号是不同的。也就是说有可能新连接和老连接的端口号是相同的。一般来说不会发生什么问题,但是还是有特殊情况出现:假设新连接和已经关闭的老连接端口号是一样的,如果前一次连接的某些数据仍然滞留在网络中,这些延迟数据在建立新连接之后才到达Server,由于新连接和老连接的端口号是一样的,又因为TCP协议判断不同连接的依据是socket pair,于是,TCP协议就认为那个延迟的数据是属于新连接的,这样就和真正的新连接的数据包发生混淆了。所以TCP连接还要在TIME_WAIT状态等待2倍MSL,这样可以保证本次连接的所有数据都从网络中消失。


作者:RaphetS
链接:https://www.jianshu.com/p/ef892323e68f
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

【TCP协议详解】的更多相关文章

  1. TCP协议详解

    TCP协议详解 一.TCP协议 1.TCP 通过以下方式提供可靠性: ·  ◆ 应用程序分割为TCP认为最合适发送的数据块.由TCP传递给IP的信息单位叫做报文段. ·  ◆ 当TCP发出一个报文段后 ...

  2. 第3章 TCP协议详解

    第3章 TCP协议详解 3.1 TCP服务的特点 传输协议主要有两个:TCP协议和UDP协议,TCP协议相对于UDP协议的特点是 面向连接使用TCP协议通信的双方必须先建立连接,完成数据交换后,通信双 ...

  3. TCP协议详解7层和4层解析(美团,阿里) 尤其是三次握手,四次挥手 具体发送的报文和状态都要掌握

    如果想了解HTTP的协议结构,原理,post,get的区别(阿里面试题目),请参考:HTTP协议 结构,get post 区别(阿里面试) 这里有个大白话的解说,可以参考:TCP/IP协议三次握手和四 ...

  4. TCP协议详解(理论篇)

    TCP协议详解(理论篇) 2012-08-20      0个评论       作者:陈立龙 收藏    我要投稿 TCP协议详解(理论篇)   1.    与UDP不同的是,TCP提供了一种面向连接 ...

  5. linux高性能服务器编程 (三) --TCP协议详解

    第三章 IP协议详解 TCP协议是TCP/IP协议族中的另外一个重要的协议,与IP协议相比,TCP协议更高进应用层.一些重要的socket选项都和TCP协议相关.这一章主要从如下方面学习: 1)TCP ...

  6. 网络通信协议八之(传输层)TCP协议详解

    传输层协议 分段是为了提高传输效率,封装是指给每个数据段添加一个编号 端到端的传输是逻辑上的端到端,并不是真正意义上的发送方某层与接收方某层之间的传输 IP协议只是保证数据报文发送到目的地,为主机之间 ...

  7. 服务器编程入门(3)TCP协议详解

    问题聚焦:     本节从如下四个方面讨论TCP协议:     TCP头部信息:指定通信的源端端口号.目的端端口号.管理TCP连接,控制两个方向的数据流     TCP状态转移过程:TCP连接的任意一 ...

  8. TCP协议详解---上

    TCP头格式 注意以下几点: TCP的包是没有IP地址的,那是IP层上的事.但是有源端口和目标端口. 一个TCP连接需要四个元组来表示是同一个连接(src_ip, src_port, dst_ip, ...

  9. TCP协议详解(一)

    Tcp协议作为传输层的重要协议之一,想必每个稍有网络编程知识的人都不会感觉到陌生,三次握手/四次挥手这些基本概念也都是耳熟能详.但是当你们进行具体的网络编程的时候发现有很多事情并没有想象中的那么简单, ...

  10. Linux 高性能服务器编程——TCP协议详解

    问题聚焦:     本节从如下四个方面讨论TCP协议:     TCP头部信息:指定通信的源端端口号.目的端端口号.管理TCP连接,控制两个方向的数据流     TCP状态转移过程:TCP连接的任意一 ...

随机推荐

  1. driver.get()和driver.navigate().to()到底有什么不同?-----Selenium快速入门(四)

    大家都知道,这两个方法都是跳转到指定的url地址,那么这两个方法有什么不同呢?遇到这种情况,第一反应就是查查官方的文档. 官方文档的说法是:Load a new web page in the cur ...

  2. 针对SQLServer数据库的通用访问类

    Web.config中代码 <configuration> <connectionStrings> <add name="connString" co ...

  3. JS 获取当前日期的前一天日期(年月日格式)

    var time = (new Date).getTime() - 24 * 60 * 60 * 1000;var yesday = new Date(time); // 获取的是前一天日期yesda ...

  4. UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)

    Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...

  5. HTML5 SSE 数据推送应用开发

    javascript表达行为,css表达外观,注意HTML既表达结构(逻辑结构),又表达内容(数据本身)通常需要更新数据时,并不需要更新结构,正是这种不改变组织结构仅改变数据的诉求,推动了数据拉取和数 ...

  6. iOS Mac忘记登录密码的4种解决方法

    4种方法: 一.使用Apple ID重置用户账户密码 使用这个方法有一个前提 如上图红框,此项必须勾选,否则无法使用Apple ID重置密码.(如果你不记得有没有勾选,则你起码要记得首次启动 OS X ...

  7. js滚动距离

    滚动距离 onclick="$('html,body').animate({scrollTop:$('.J_user_evaluate').offset().top-110},500)&qu ...

  8. python基础目录

    一.博客链接 1.基础操作 python基础,变量,if语句 while循环/格式化输出/ 逻辑运算/ 编码 /单位转换 列表的操作,元组,range; enumerate dict字典;dict的操 ...

  9. 浅析group by,having count()

    SELECT COUNT(*) FROM (SELECT COUNT(id),order_type,city_id,category_id,major_category_id,puid,user_id ...

  10. java使用Redis8--3.0集群

    Redis集群至少需要3个主节点 # cd /usr/redis 创建一个目录 # mkdir cluster # cd cluster 1.复制一个配置文件 # cp ../redis.conf 9 ...