[Scikit-learn] Dynamic Bayesian Network - Kalman Filter
看上去不错的网站:http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-18.html
SciPy Cookbook:http://scipy-cookbook.readthedocs.io/items/KalmanFiltering.html
讲解思路貌似是在已知迭代结果的基础上做讲解,不是很透彻。
1. 用矩阵表示

2. 本质就是:二维高斯的协方差与sampling效果

3. 不确定性在状态之间的传递

4. 矩阵表示观察数据

5. Kalman系数

6. 噪声协方差矩阵的更新

7. Matlab实现

思考:
与数学领域 openBUGS 的估参的关系是什么?[Bayes] openBUGS: this is not the annoying bugs in programming
一个是对逐渐增多数据的实时预测;一个是对总体数据的回归拟合。
代码示例:纯python代码
# Kalman filter example demo in Python # A Python implementation of the example given in pages 11-15 of "An
# Introduction to the Kalman Filter" by Greg Welch and Gary Bishop,
# University of North Carolina at Chapel Hill, Department of Computer
# Science, TR 95-041,
# http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html # by Andrew D. Straw import numpy as np
import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (10, 8) # intial parameters
n_iter = 50
sz = (n_iter,) # size of array
x = -0.37727 # truth value (typo in example at top of p. 13 calls this z)
z = np.random.normal(x,0.1,size=sz) # observations (normal about x, sigma=0.1)
# 已获得一组随机数 Q = 1e-5 # process variance # allocate space for arrays
xhat =np.zeros(sz) # a posteri estimate of x
P =np.zeros(sz) # a posteri error estimate
xhatminus =np.zeros(sz) # a priori estimate of x
Pminus =np.zeros(sz) # a priori error estimate
K =np.zeros(sz) # gain or blending factor R = 0.1**2 # estimate of measurement variance, change to see effect # intial guesses
xhat[0] = 0.0
P[0] = 1.0
# 开始迭代
for k in range(1, n_iter):
# time update
xhatminus[k] = xhat[k-1]
Pminus[k] = P[k-1]+Q # measurement update
K[k] = Pminus[k]/( Pminus[k]+R )
xhat[k] = xhatminus[k]+K[k]*(z[k]-xhatminus[k])
P[k] = (1-K[k])*Pminus[k] plt.figure()
plt.plot(z,'k+',label='noisy measurements')
plt.plot(xhat,'b-',label='a posteri estimate')
plt.axhline(x,color='g',label='truth value')
plt.legend()
plt.title('Estimate vs. iteration step', fontweight='bold')
plt.xlabel('Iteration')
plt.ylabel('Voltage') plt.figure()
valid_iter = range(1,n_iter) # Pminus not valid at step 0
plt.plot(valid_iter,Pminus[valid_iter],label='a priori error estimate')
plt.title('Estimated $\it{\mathbf{a \ priori}}$ error vs. iteration step', fontweight='bold')
plt.xlabel('Iteration')
plt.ylabel('$(Voltage)^2$')
plt.setp(plt.gca(),'ylim',[0,.01])
plt.show()
Result:


Goto: [OpenCV] Samples 14: kalman filter
其实,真正的Kalman Filter用得是如下理论,上述例子只是教小学生的入门读物。

Goto: https://www.youtube.com/watch?v=UVNeulkWWUM by XU Yida
关键需要理解: http://www.cnblogs.com/rubbninja/p/6220284.html


【重点】证明过程的理解关键是:
因为是线性滤波器,本身又具备一个alpha迭代的过程,那么先找出joint distribution,
然后,根据高斯的性质直接得出条件概率,即是Update Rule,这样正好对应于滤波器的alpha迭代过程的形式。
这个条件概率就是关于xt的,也就是最新的状态的概率分布,那么期望也就是miu,就是最新的xt。
大概就是这么个思路,笔记在本本上,具体请看视频。符号比较多,但大体就是如上脉络。
[Scikit-learn] Dynamic Bayesian Network - Kalman Filter的更多相关文章
- [Scikit-learn] *Dynamic Bayesian Network - Partical Filter
涉及的一些知识: 机器人的自我定位 Sequential Importance Sampling Ref: http://scipy-cookbook.readthedocs.io/items/Par ...
- [Scikit-learn] Dynamic Bayesian Network - Conditional Random Field
李航,第十一章,条件随机场 参考:[PGM] Markov Networks 携代码:用 Python 通过马尔可夫随机场(MRF)与 Ising Model 进行二值图降噪[推荐!] CRF:htt ...
- [Scikit-learn] Dynamic Bayesian Network - HMM
Warning The sklearn.hmm module has now been deprecated due to it no longer matching the scope and th ...
- (转) How a Kalman filter works, in pictures
How a Kalman filter works, in pictures I have to tell you about the Kalman filter, because what it d ...
- 概率图模型(PGM):贝叶斯网(Bayesian network)初探
1. 从贝叶斯方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括贝叶斯方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界 ...
- Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood
Abstract Bayesian networks are a powerful probabilistic representation, and their use for classifica ...
- 卡尔曼滤波器 Kalman Filter (转载)
在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”.跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡 尔曼全名Rudolf Emil ...
- 卡尔曼滤波—Simple Kalman Filter for 2D tracking with OpenCV
之前有关卡尔曼滤波的例子都比较简单,只能用于简单的理解卡尔曼滤波的基本步骤.现在让我们来看看卡尔曼滤波在实际中到底能做些什么吧.这里有一个使用卡尔曼滤波在窗口内跟踪鼠标移动的例子,原作者主页:http ...
- (二). 细说Kalman滤波:The Kalman Filter
本文为原创文章,转载请注明出处,http://www.cnblogs.com/ycwang16/p/5999034.html 前面介绍了Bayes滤波方法,我们接下来详细说说Kalman滤波器.虽然K ...
随机推荐
- Winform文件夹图片批量压缩整理修改
效果图: 窗体设计器生成的代码: namespace ImageCompact { partial class MainForm { /// <summary> /// 必需的设计器变量. ...
- 【转】Update: Android.mk 中的 LOCAL_SRC_FILES, LOCAL_C_INCLUDES
看原文请移步:Update: Android.mk 中的 LOCAL_SRC_FILES, LOCAL_C_INCLUDES 我在先前的两篇post 编写Android.mk中的LOCAL_SRC_F ...
- 处理oracle 报ORA-12505 信息:listener does not currently know of SID given in connect descriptor...
oracle 的 sql developer连接不上问题: sql developer连接本机的服务器时,有时候能连接,有时候连接不上,什么原因造成的呢? ①检查oracle服务器和监听器是否已经启动 ...
- Linux Shell sort排序常用命令(转载)
转载自:http://blog.csdn.net/monkeyduck/article/details/10097829 1 sort的工作原理 sort将文件的每一行作为一个单位,相互比较,比较原则 ...
- c++重载>>和<<
在重载输出输入运算符的时候,只能采用全局函数的方式(因为我们不能在ostream和istream类中编写成员函数),这里才是友元函数真正的应用场景.对于输出运算符,主要负责打印对象的内容而非控制格式, ...
- ectouch ucenter用户注册失败问题
ectouch 注册时没有给ecshop传下面这几个值: `alias` ) NOT NULL DEFAULT '' , `msn` ) NOT NULL DEFAULT '' , `qq` ) NO ...
- 窗口过程 Wndproc
操作系统向应用程序发送一系列消息,如左键按下和左键抬起,应用程序将通过GetMessage等方法 Wndproc应用例子最终将消息提交到窗口过程(WndProc)指向一个应用程序定义的窗口过程的指针. ...
- C++ 标准头文件与C头文件区别与联系以及C风格字符串
1.cstdlib是C++里面的一个常用头文件, 等价于C中的<stdlib.h>. 2.一般一个带“.h” 扩展名的库文件,比如iostream.h.这是延续C语言的,为了兼容C.在新标 ...
- java.lang.OutOfMemoryError: Java heap space 解决方法
从网上抄过来的,因为经常碰到这个问题,记录一下. java.lang.OutOfMemoryError: Java heap space 解决方法 这个问题的根源是jvm虚拟机的默认Heap大小是64 ...
- 最简单的基于FFmpeg的移动端样例:Android 视频解码器-单个库版
===================================================== 最简单的基于FFmpeg的移动端样例系列文章列表: 最简单的基于FFmpeg的移动端样例:A ...