小Q有n本书,每本书有一个独一无二的编号,现在它们正零乱地在地上排成了一排。

小Q希望把这一排书分成恰好k段,使得每段至少有一本书,然后把每段按照现在的顺序依次放到k层书架的每一层上去。将所有书都放到书架上后,小Q这才突然意识到它们是乱序的,他只好把每一层的书分别按照编号

从小到大排序。排序每次可以在1单位时间内交换同一层上两本相邻的书。

请写一个程序,帮助小Q计算如何划分这k段,且如何交换这些书,使得总交换次数最少。

Input

第一行包含两个正整数n; k(1≤n≤40000;1≤k≤min(10; n))。

第二行包含n个互不相同的正整数a1,a2,..., an(1≤ai≤n),分别表示地面上每本书的编号。

Output

输出一行一个整数,即最少的总交换次数。

Examples

stdin

6 3

4 3 6 2 5 1

stdout

1

Notes

按\([4,3,6][2,5][1]\)划分,需要排序1 + 0 + 0 = 1次。


思路

分成k段,最小化逆序对个数之和

非常套路了吧

决策单调性非常显然

那么就对于每一层进行分治

然后中间怎么维护逆序对个数?

可以用莫队+树状数组

因为首尾删/加数的逆序对个数是很好维护的(bit查一下就可以啦)

然后就很简单了

几分钟就写完了。。编译过了就A了


//Author: dream_maker
#include<bits/stdc++.h>
using namespace std;
//----------------------------------------------
typedef pair<int, int> pi;
typedef long long ll;
typedef double db;
#define fi first
#define se second
#define fu(a, b, c) for (int a = b; a <= c; ++a)
#define fd(a, b, c) for (int a = b; a >= c; --a)
#define fv(a, b) for (int a = 0; a < (signed)b.size(); ++a)
const int INF_of_int = 1e9;
const ll INF_of_ll = 1e18;
template <typename T>
void Read(T &x) {
bool w = 1;x = 0;
char c = getchar();
while (!isdigit(c) && c != '-') c = getchar();
if (c == '-') w = 0, c = getchar();
while (isdigit(c)) {
x = (x<<1) + (x<<3) + c -'0';
c = getchar();
}
if (!w) x = -x;
}
template <typename T>
void Write(T x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9) Write(x / 10);
putchar(x % 10 + '0');
}
//----------------------------------------------
const int N = 1e6 + 10;
int n, m, a[N];
int nowl = 1, nowr = 0;
ll res = 0, dp[N][12];
int bit[N]; void add(int x) {
for (; x <= n; x += x & (-x)) ++bit[x];
} void sub(int x) {
for (; x <= n; x += x & (-x)) --bit[x];
} int query(int x) {
int result = 0;
for (; x; x -= x & (-x)) result += bit[x];
return result;
} int query(int l, int r) {
return query(r) - query(l - 1);
} void move_step(int al, int ar) {
while (nowr < ar) {
++nowr;
res += query(a[nowr], n);
add(a[nowr]);
}
while (nowl > al) {
--nowl;
res += query(1, a[nowl]);
add(a[nowl]);
}
while (nowr > ar) {
sub(a[nowr]);
res -= query(a[nowr], n);
--nowr;
}
while (nowl < al) {
sub(a[nowl]);
res -= query(1, a[nowl]);
++nowl;
}
}
void solve(int l, int r, int ql, int qr, int k) {
if (l > r) return;
int mid = (l + r) >> 1, pos = mid;
fu(i, ql, min(qr, mid - 1)) {
move_step(i + 1, mid);
if (dp[i][k - 1] + res < dp[mid][k]) {
dp[mid][k] = dp[i][k - 1] + res;
pos = i;
}
}
solve(l, mid - 1, ql, pos, k);
solve(mid + 1, r, pos, qr, k);
}
int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
#endif
Read(n), Read(m);
fu(i, 1, n) Read(a[i]);
fu(i, 1, n)
fu(j, 0, m) dp[i][j] = INF_of_ll;
dp[0][0] = 0;
fu(i, 1, m) solve(1, n, 0, n, i);
Write(dp[n][m]);
return 0;
}

BZOJ5125: [Lydsy1712月赛]小Q的书架【决策单调性优化DP】【BIT】【莫队】【分治】的更多相关文章

  1. BZOJ5125: [Lydsy1712月赛]小Q的书架(DP决策单调性)

    题意:N个数,按顺序划分为K组,使得逆序对之和最小. 思路:之前能用四边形不等式写的,一般网上都还有DP单调性分治的做法,今天也尝试用后者写(抄)了一遍.即: 分成K组,我们进行K-1次分治,get( ...

  2. [BZOJ5125]小Q的书架(决策单调性+分治DP+树状数组)

    显然有决策单调性,但由于逆序对不容易计算,考虑分治DP. solve(k,x,y,l,r)表示当前需要选k段,待更新的位置为[l,r],这些位置的可能决策点区间为[x,y].暴力计算出(l+r)/2的 ...

  3. bzoj 5125: [Lydsy1712月赛]小Q的书架

    新学了一波 决策单调性 dp 套路.... 这种dp一般是长这样的 => f[i][j] = max/min  { f[i-1][k] + cost(k+1,j)} ,其中cost函数满足四边形 ...

  4. 决策单调性优化dp

    决策单调性: 对于一些dp方程,经过一系列的猜想和证明,可以得出,所有取的最优解的转移点(即决策点)位置是单调递增的. 即:假设f[i]=min(f[j]+b[j]) (j<i) 并且,对于任意 ...

  5. 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)

    传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...

  6. Lightning Conductor 洛谷P3515 决策单调性优化DP

    遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...

  7. [BZOJ4850][JSOI2016]灯塔(分块/决策单调性优化DP)

    第一种方法是决策单调性优化DP. 决策单调性是指,设i>j,若在某个位置x(x>i)上,决策i比决策j优,那么在x以后的位置上i都一定比j优. 根号函数是一个典型的具有决策单调性的函数,由 ...

  8. CF868F Yet Another Minimization Problem 分治决策单调性优化DP

    题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...

  9. BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】

    Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...

随机推荐

  1. java基础语法 List

    List:元素是有序的(怎么存的就怎么取出来,顺序不会乱),元素可以重复(角标1上有个3,角标2上也可以有个3)因为该集合体系有索引, ArrayList:底层的数据结构使用的是数组结构(数组长度是可 ...

  2. Linux系统——Inotify事件监控工具

    每秒传输文件200个 Rsync放在定时任务中也只是一分钟执行一回,要想达到实时的效果,为防止单点nfs架构故障,再启动一台nfs服务器作为主nfs服务器的备份服务器,此时需要inotify实时同步数 ...

  3. rails常用gem

    一,开发模式下 1,better_errors 使用全新的页面替换 Rails 默认的错误页面,显示更多的上下文信息,例如源码 和变量的值:配合binding_of_caller可以执行代码查看变量的 ...

  4. JS中的slice和splice

    1,slice  : 定义:接收一个或两个参数,它可以创建一个由当前数组中的一项或多项组成的新数组,注意是新数组哦~ 也就是说它不会修改原来数组的值. 用法:slice( para1 ),会截取从pa ...

  5. android驱动学习---led实验

    ======================== 驱动: 内核:android-kernel 2.6.36  (必须对应你的板子上内核,不然会出现insmod错误) 目的:通过android应用层用户 ...

  6. CAfile: /etc/ssl/certs/ca-certificates.crt CRLfile: none 解决方法

    参考:CAfile: /etc/ssl/certs/ca-certificates.crt CRLfile: none 环境 主系统 OS X,虚拟机,Ubuntu 14.04 64bit. 问题描述 ...

  7. shell 计时获取输入

    #!/bin/bash   if read -t 5 -p "please enter your name:" name   then       echo "hello ...

  8. python 判断是否是元音字母

    def is_vowel(char): all_vowels = 'aeiou' return char in all_vowels print(is_vowel('c')) print(is_vow ...

  9. vs_u8前缀

    1.ZC: 个人测试下来,VS2015开始 支持 u8前缀. 2.What's New for Visual C++ in Visual Studio 2015 https://msdn.micros ...

  10. c++指向指针的指针与 c++指针作为函数参数传递问题

    一直搞不明白,c++中指针到底是个啥东西,今天遇到到c++,指向指针的指针的问题,突然有点开窍了. 举个例子: int main(int argc, char** argv){ int a[5]={1 ...