小Q有n本书,每本书有一个独一无二的编号,现在它们正零乱地在地上排成了一排。

小Q希望把这一排书分成恰好k段,使得每段至少有一本书,然后把每段按照现在的顺序依次放到k层书架的每一层上去。将所有书都放到书架上后,小Q这才突然意识到它们是乱序的,他只好把每一层的书分别按照编号

从小到大排序。排序每次可以在1单位时间内交换同一层上两本相邻的书。

请写一个程序,帮助小Q计算如何划分这k段,且如何交换这些书,使得总交换次数最少。

Input

第一行包含两个正整数n; k(1≤n≤40000;1≤k≤min(10; n))。

第二行包含n个互不相同的正整数a1,a2,..., an(1≤ai≤n),分别表示地面上每本书的编号。

Output

输出一行一个整数,即最少的总交换次数。

Examples

stdin

6 3

4 3 6 2 5 1

stdout

1

Notes

按\([4,3,6][2,5][1]\)划分,需要排序1 + 0 + 0 = 1次。


思路

分成k段,最小化逆序对个数之和

非常套路了吧

决策单调性非常显然

那么就对于每一层进行分治

然后中间怎么维护逆序对个数?

可以用莫队+树状数组

因为首尾删/加数的逆序对个数是很好维护的(bit查一下就可以啦)

然后就很简单了

几分钟就写完了。。编译过了就A了


//Author: dream_maker
#include<bits/stdc++.h>
using namespace std;
//----------------------------------------------
typedef pair<int, int> pi;
typedef long long ll;
typedef double db;
#define fi first
#define se second
#define fu(a, b, c) for (int a = b; a <= c; ++a)
#define fd(a, b, c) for (int a = b; a >= c; --a)
#define fv(a, b) for (int a = 0; a < (signed)b.size(); ++a)
const int INF_of_int = 1e9;
const ll INF_of_ll = 1e18;
template <typename T>
void Read(T &x) {
bool w = 1;x = 0;
char c = getchar();
while (!isdigit(c) && c != '-') c = getchar();
if (c == '-') w = 0, c = getchar();
while (isdigit(c)) {
x = (x<<1) + (x<<3) + c -'0';
c = getchar();
}
if (!w) x = -x;
}
template <typename T>
void Write(T x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9) Write(x / 10);
putchar(x % 10 + '0');
}
//----------------------------------------------
const int N = 1e6 + 10;
int n, m, a[N];
int nowl = 1, nowr = 0;
ll res = 0, dp[N][12];
int bit[N]; void add(int x) {
for (; x <= n; x += x & (-x)) ++bit[x];
} void sub(int x) {
for (; x <= n; x += x & (-x)) --bit[x];
} int query(int x) {
int result = 0;
for (; x; x -= x & (-x)) result += bit[x];
return result;
} int query(int l, int r) {
return query(r) - query(l - 1);
} void move_step(int al, int ar) {
while (nowr < ar) {
++nowr;
res += query(a[nowr], n);
add(a[nowr]);
}
while (nowl > al) {
--nowl;
res += query(1, a[nowl]);
add(a[nowl]);
}
while (nowr > ar) {
sub(a[nowr]);
res -= query(a[nowr], n);
--nowr;
}
while (nowl < al) {
sub(a[nowl]);
res -= query(1, a[nowl]);
++nowl;
}
}
void solve(int l, int r, int ql, int qr, int k) {
if (l > r) return;
int mid = (l + r) >> 1, pos = mid;
fu(i, ql, min(qr, mid - 1)) {
move_step(i + 1, mid);
if (dp[i][k - 1] + res < dp[mid][k]) {
dp[mid][k] = dp[i][k - 1] + res;
pos = i;
}
}
solve(l, mid - 1, ql, pos, k);
solve(mid + 1, r, pos, qr, k);
}
int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
#endif
Read(n), Read(m);
fu(i, 1, n) Read(a[i]);
fu(i, 1, n)
fu(j, 0, m) dp[i][j] = INF_of_ll;
dp[0][0] = 0;
fu(i, 1, m) solve(1, n, 0, n, i);
Write(dp[n][m]);
return 0;
}

BZOJ5125: [Lydsy1712月赛]小Q的书架【决策单调性优化DP】【BIT】【莫队】【分治】的更多相关文章

  1. BZOJ5125: [Lydsy1712月赛]小Q的书架(DP决策单调性)

    题意:N个数,按顺序划分为K组,使得逆序对之和最小. 思路:之前能用四边形不等式写的,一般网上都还有DP单调性分治的做法,今天也尝试用后者写(抄)了一遍.即: 分成K组,我们进行K-1次分治,get( ...

  2. [BZOJ5125]小Q的书架(决策单调性+分治DP+树状数组)

    显然有决策单调性,但由于逆序对不容易计算,考虑分治DP. solve(k,x,y,l,r)表示当前需要选k段,待更新的位置为[l,r],这些位置的可能决策点区间为[x,y].暴力计算出(l+r)/2的 ...

  3. bzoj 5125: [Lydsy1712月赛]小Q的书架

    新学了一波 决策单调性 dp 套路.... 这种dp一般是长这样的 => f[i][j] = max/min  { f[i-1][k] + cost(k+1,j)} ,其中cost函数满足四边形 ...

  4. 决策单调性优化dp

    决策单调性: 对于一些dp方程,经过一系列的猜想和证明,可以得出,所有取的最优解的转移点(即决策点)位置是单调递增的. 即:假设f[i]=min(f[j]+b[j]) (j<i) 并且,对于任意 ...

  5. 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)

    传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...

  6. Lightning Conductor 洛谷P3515 决策单调性优化DP

    遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...

  7. [BZOJ4850][JSOI2016]灯塔(分块/决策单调性优化DP)

    第一种方法是决策单调性优化DP. 决策单调性是指,设i>j,若在某个位置x(x>i)上,决策i比决策j优,那么在x以后的位置上i都一定比j优. 根号函数是一个典型的具有决策单调性的函数,由 ...

  8. CF868F Yet Another Minimization Problem 分治决策单调性优化DP

    题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...

  9. BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】

    Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...

随机推荐

  1. grub的安装与配置-------引导redhat grub

    1.安装 有两种方法: a.在联网的情况下,用新立德安装: apt-get install grub b.在没网的时候,特别是linux网卡驱动没有安装: 自己从http://packages.ubu ...

  2. Django restframwork获取列表详情

    z哎Django restframwork中就有一个类可以获取列表的详情内容,只有两行代码就可以搞定,在浏览器测试是ok的.但是这样的接口给前端,前端点击详情然后会将models.表名.objects ...

  3. Fms3和Flex打造在线视频录制和回放

    本博推荐文章快速导航: Sql Server2005 Transact-SQL 新兵器学习MCAD学习 代码阅读总结 ASP.NET状态管理 DB(数据库)WAPWinFormFlex,Fms aie ...

  4. SQL学习笔记六之MySQL数据备份和pymysql模块

    mysql六:数据备份.pymysql模块   阅读目录 一 IDE工具介绍 二 MySQL数据备份 三 pymysql模块 一 IDE工具介绍 生产环境还是推荐使用mysql命令行,但为了方便我们测 ...

  5. DirectX9.0c SDK学习笔记(一)

    Direct9.0c SDK中提供了一个叫DXviewer的*.x格式文件查看器的源码,代码给出了基于DXUT框架的模型显示接口使用方法, 对于我想编写一个动作捕捉的上位程序是大有助益的. 我的想法是 ...

  6. 《Effective Java 2nd》第7章 方法

    目录 第38条 检查参数的有效性 第39条 必要时进行保护性拷贝 第40条 谨慎设计方法签名 第41条 慎用重载 第42条 慎用可变参数 第43条 返回零长度的数组或集合,而不是null 第44条 为 ...

  7. CodeForces - 55D Beautiful numbers(数位DP+Hash)题解

    题意:美丽数定义:一个正数能被所有位数整除.求给出一个范围,回答这个范围内的美丽数. 思路:一个数能被所有位数整除,换句话说就是一个数能整除所有位数的LCM,所以问题就转化为一个数能否被所有位数的LC ...

  8. hdu 6301 Distinct Values(贪心)题解

    题意:长为n的串,给你m个区间,这些区间内元素不重复,问这样的串字典序最小为? 思路:用set保存当前能插入的元素,这样就能直接插入最小元素了.对操作按l排序,因为排过的不用排,所以两个指针L,R是一 ...

  9. Using SQLXML Bulk Load in the .NET Environment

    http://msdn.microsoft.com/en-us/library/ms171878.aspx 1.首先创建一张表 CREATE TABLE Ord ( OrderID ,) PRIMAR ...

  10. postman 安装桌面版

    https://github.com/postmanlabs/postman-app-support