A 28nm SoC with a 1.2GHz 568nJ/Prediction Sparse Deep-Neural-Network Engine with >0.1 Timing Error Rate Tolerance for IoT Applications

单位:Harvard(哈佛大学)

这是一篇专门为DNN加速设计的芯片,在CNN加速芯片设计当道的今天也算是非常另类了~~不过能在ISSCC上发表,自然也有它的innovation,下面讲一讲。

就我当前的可以理解部分(知识结构不足哈,Razor timing violation detection这一块暂时不是特别清楚,留着以后再补),我觉得本文的创新点有:(1)稀疏计算,数据0不会参与运算;(2)采用sign-magnitude number format保存参数和计算;

DNN计算(就是一个向量*矩阵)是存在SIMD窗口的,一个输入同时可以计算多个节点。但是很容易想到,如果SIMD窗口太大,数据是重用了,但是参数一次要读太多会使得带宽变大。

因此,作者分析了数据和参数读取的相对比例,如图,可以看出,8通道的SIMD其效率是较高的,带宽也在合理范围内,同时可以在128b位宽的AXI总线下运行获得10x的数据有效重用率。

下面是整体架构图,是一个5阶段的SIMD流水架构,流程基本上是:

1、Host Processor将配置和输入数据载入CFG和IPBUF

2、乘累加器进行计算,数据由IPBUF读入,权重由W-MEM读入

3、在Activation步骤,进行偏置、激活操作,随后将数据写回XBUF(隐藏层结果)

4、向host发起中断请求,数据输出

分别对几个点展开讲一下:

XBUF:有两份,使得同时可以写结果到XBUF,又可以读数据用于计算;

Weight采用sign-magnitude number format:其实就是1bit符号位,后面是绝对值的原码,这样的好处是减少了补码表示带来的bit翻转率,既降低了功耗,也减少了出错率;

MAC Datapath:有8个并行的16bit MAC单元。因为采用SM,所以作者对同号和异号分开处理——其实就是同号乘结果累加,异号减去。

重点还有sparse怎么做。在MAC单元计算完(累加完成),然后要加上Bias,然后过RELU单元(也是因为RELU所以数据结果才稀疏,但是换其他激活函数就不行了),对于0数据(以及小于阈值的比较小的值),是不会写回XBUF的,同时Activation生产了SKIP信号存在临时的NBUF中。NBUF(512B SRAM)中维护的是参数中非零的index,DMA阶段会根据index来生成weight address,用于下个阶段从W-MEM取参数;这样就可以避免0数据的计算cycle了。

最后总结[1]:

DNN ENGINE——一款高能效的DNN加速器(568nj/pred@1.2GHz),时序容差>10^-1@MNIST 98.36%

-Parallelism:10x的数据重用@带宽128b/cycle

-Sparcity:+4x吞吐,-4x能耗

-Resilience:+50%吞吐/-30%能耗(2/Razor)

[1] https://reconfigdeeplearning.com/2017/02/08/isscc-2017-session-14-slides14-3/

[2] ISSCC2017, A 28nm SoC with a 1.2GHz 568nJ/Prediction Sparse Deep-Neural-Network Engine with >0.1 Timing Error Rate Tolerance for IoT Applications

ISSCC 2017论文导读 Session 14: A 28nm SoC with a 1.2GHz Prediction Sparse Deep-Neural-Network Engine的更多相关文章

  1. ISSCC 2017论文导读 Session 14:ENVISION: A 0.26-to-10 TOPS/W Subword-Parallel DVAFS CNN Processor in 28nm

    ENVISION: A 0.26-to-10 TOPS/W Subword-Parallel Dynamic-Voltage-Accuracy-Frequency-Scalable CNN Proce ...

  2. ISSCC 2017论文导读 Session 14 Deep Learning Processors,DNPU: An 8.1TOPS/W Reconfigurable CNN-RNN

    转载请注明,本文出自Bin的专栏http://blog.csdn.net/xbinworld,谢谢! DNPU: An 8.1TOPS/W Reconfigurable CNN-RNN Process ...

  3. ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network

    最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional N ...

  4. ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network SOC

    最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional N ...

  5. ISSCC 2017论文导读 Session 14:A 0.62mW Ultra-Low-Power Convolutional-Neural-Network Face-Recognition Pro

    A 0.62mW Ultra-Low-Power Convolutional-Neural-Network Face-Recognition Processor and a CIS Integrate ...

  6. ISSCC 2017论文导读 Session 14:A 288μW Programmable Deep-Learning Processor with 270KB On-Chip Weight

    A 288μW Programmable Deep-Learning Processor with 270KB On-Chip Weight Storage Using Non-Uniform Mem ...

  7. 论文翻译:2022_PACDNN: A phase-aware composite deep neural network for speech enhancement

    论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware compo ...

  8. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

  9. 论文阅读(XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network)

    XiangBai——[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

随机推荐

  1. flag - 待浏览学习网站

    学习:gulp+jade(pug)+sass 待浏览网站如下:http://www.ydcss.com/archives/18#lesson1 https://nodejs.org/en/ https ...

  2. Excel 2010 如何将筛选后的数据复制粘贴到另一个工作表筛选后的表格里

    如果你是指自动筛选后,把筛选数据复制/粘贴到另外一个工作表中,不妨试试试 第一步选中筛选后的数据区域:第二步执行菜单命令“编辑/定位/定位条件/可见单元格”,确定:第三步单击复制按钮或者Ctrl+C或 ...

  3. JavaWeb温习之Cookie对象

    1. 会话的概念 会话可简单理解为:用户开一个浏览器,点击多个超链接,访问服务器多个web资源,然后关闭浏览器,整个过程称之为一个会话.有状态会话:一个同学来过教室,下次再来教室,我们会知道这个同学曾 ...

  4. Java初学者笔记一:元类、获取类型、枚举

    零.绪论: 2018年新年伊始,学习Java的冲动越来越强烈,毕竟以后无论是做安全开发还是安全研究都必不可少的掌握这门语言,所以在不断完善Python作为脚本语言的主语言的情况下觉得学习Java作为高 ...

  5. javaWeb项目springMVC框架下利用ITextpdf 工具打印PDF文件的方法(打印表单、插入图片)

    方法一:打印PDF表单以及在PDF中加入图片 需要的资料: jar包:iTextAsian.jar ,itext-2.1.7.jar: 源码: public static void main(Stri ...

  6. python环境杂谈

    最近发现集群里的服务器上有多个python环境,版本相同的python也有多个,主要区别是site-packages里安装的模块不同,这样配置的好处是不同类型的项目可以使用自己的python环境,不会 ...

  7. java 颁发公钥 私钥 php js RSA 加密解密整合

    PHP rsa密钥生成 加密解密 - PHP开发 - CSDN博客 https://blog.csdn.net/duzhenxun/article/details/8879227 <?php c ...

  8. Mercurial

    Contributing Changes http://nginx.org/en/docs/contributing_changes.html Mercurial is used to store s ...

  9. Database Partitioning Options DATABASE SHARDING

    w主写从读.集群节点间时时内存复制.单表横切纵切.分析报表系统通过服务器联表 http://www.agildata.com/database-sharding/ Database Partition ...

  10. (ubuntu ufw)My firewall is blocking network connections from the docker container to outside

    Maybe this is due to the current version, but the current answer doesn't work on my system (Docker 0 ...