UVa 10791 最小公倍数的最小和(唯一分解定理)
https://vjudge.net/problem/UVA-10791
题意:
输入整数n,求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小。
思路:
首先对n进行质因数分解,举个例子来说,12=2×2×3,最小和为7,也就是4和3,相同质因子必须放在一起,也就是说这里的2个2必须合在一起变成4,不然2和3会有更小的公倍数6。
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
using namespace std; long long n; int main()
{
//freopen("D:\\input.txt", "r", stdin);
int kase = ;
while (~scanf("%d", &n) && n)
{
int temp;
int ret = ;
long long ans = ;
int m = sqrt(n + 0.5);
for (int i = ; i <= m && n > ; i++)
{
if (n%i == )
{
temp = ;
while (n%i == )
{
temp *= i;
n /= i;
}
ans += temp;
ret++;
}
}
if (n > )
{
ans += n;
ret++;
}
while (ret < )
{
ans++;
ret++;
}
printf("Case %d: %lld\n", ++kase, ans);
}
}
UVa 10791 最小公倍数的最小和(唯一分解定理)的更多相关文章
- Uva 10791 最小公倍数的最小和 唯一分解定理
题目链接:https://vjudge.net/contest/156903#problem/C 题意:给一个数 n ,求至少 2个正整数,使得他们的最小公倍数为 n ,而且这些数之和最小. 分析: ...
- UVa 10791 Minimum Sum LCM【唯一分解定理】
题意:给出n,求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小 看的紫书--- 用唯一分解定理,n=(a1)^p1*(a2)^p2---*(ak)^pk,当每一个(ak)^pk作为一个单 ...
- UVa 10791 - Minimum Sum LCM(唯一分解定理)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 10375 Choose and divide【唯一分解定理】
题意:求C(p,q)/C(r,s),4个数均小于10000,答案不大于10^8 思路:根据答案的范围猜测,不需要使用高精度.根据唯一分解定理,每一个数都可以分解成若干素数相乘.先求出10000以内的所 ...
- UVa 1635 - Irrelevant Elements(二项式系数 + 唯一分解定理)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVa 10375 - Choose and divide(唯一分解定理)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVa 10375 选择与除法(唯一分解定理)
https://vjudge.net/problem/UVA-10375 题意: 输入整数p,q,r,s,计算C(p,q)/C(r,s). 思路: 先打个素数表,然后用一个数组e来保存每个素数所对应的 ...
- UVa 1635 无关的元素(唯一分解定理+二项式定理)
https://vjudge.net/problem/UVA-1635 题意: 给定n个数a1,a2,...an,依次求出相邻两数之和,将得到一个新数列.重复上述操作,最后结果将变成一个数.问这个数除 ...
- 唯一分解定理(以Minimun Sum LCM UVa 10791为例)
唯一分解定理是指任何正整数都可以分解为一些素数的幂之积,即任意正整数n=a1^p1*a2^p2*...*ai^pi:其中ai为任意素数,pi为任意整数. 题意是输入整数n,求至少2个整数,使得它们的最 ...
随机推荐
- CentOS下安装cvechecker并进行主机基线安全检查
一.cvechecker的安装 1.首先下载cvechecker并解压该文件: cd /home/username mkdir cve wget https://raw.githubuserconte ...
- Linux创建Python虚拟环境
Linux创建Python虚拟环境 安装 pip install virtualenv 基本使用 为一个工程创建一个虚拟环境: $ cd my_project $ virtualenv venv #v ...
- Java开发环境的搭建(jdk,eclipse)
一.java 开发环境的搭建 这里主要说的是在windows 环境下怎么配置环境. 1.首先安装JDK java的sdk简称JDK ,去其官方网站下载最近的JDK即可. http://www.orac ...
- 常用linq语法
1.简单的linq语法 var ss = from r in db.Am_recProScheme select r; var ss1 = db.Am_recProScheme; string sss ...
- PHP的线性安全和非线性安全的区别
从2000年10月20日发布的第一个Windows版的PHP3.0.17开始的都是线程安全的版本,这是由于与Linux/Unix系统是采用多进程的工作方式不同的是Windows系统是采用多线程的工作方 ...
- Git 基本操作(二)
1. 分支操作 1.1 Fast-forward 当被合并分支(C4)位于合并分支(C2)的历史线上,此时的合并称为"fast-forward"; // hotfix 被合并到 m ...
- MongoDB Windows环境安装及配置( 一)
原文http://www.cnblogs.com/lzrabbit/p/3682510.html MongoDB一般安装 1.首先到官网 (http://www.mongodb.org/downloa ...
- linux shell 正则表达式(BREs,EREs,PREs)差异比较(转)
add by zhj: Python的正则表达式跟Perl很像,Python的re模块文档中也说"This module provides regular expression matchi ...
- LVM的一些问题汇总 tune2fs命令
LVM的一些问题汇总 tune2fs命令 --http://www.aminglinux.com/bbs/forum.php?mod=viewthread&tid=7664&page ...
- 【代码片段】Python发送带图片的邮件
# coding=utf-8 import smtplib from email.mime.text import MIMEText from email.mime.multipart import ...