Spark RDD、DataFrame和DataSet的区别
版权声明:本文为博主原创文章,未经博主允许不得转载。
转载请标明出处:小帆的帆的专栏
RDD
优点:
- 编译时类型安全
编译时就能检查出类型错误 - 面向对象的编程风格
直接通过类名点的方式来操作数据
缺点:
- 序列化和反序列化的性能开销
无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化. - GC的性能开销
频繁的创建和销毁对象, 势必会增加GC
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
object Run {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("test").setMaster("local")
val sc = new SparkContext(conf)
sc.setLogLevel("WARN")
val sqlContext = new SQLContext(sc)
/**
* id age
* 1 30
* 2 29
* 3 21
*/
case class Person(id: Int, age: Int)
val idAgeRDDPerson = sc.parallelize(Array(Person(1, 30), Person(2, 29), Person(3, 21)))
// 优点1
// idAge.filter(_.age > "") // 编译时报错, int不能跟String比
// 优点2
idAgeRDDPerson.filter(_.age > 25) // 直接操作一个个的person对象
}
}
DataFrame
DataFrame引入了schema和off-heap
schema : RDD每一行的数据, 结构都是一样的. 这个结构就存储在schema中. Spark通过schame就能够读懂数据, 因此在通信和IO时就只需要序列化和反序列化数据, 而结构的部分就可以省略了.
off-heap : 意味着JVM堆以外的内存, 这些内存直接受操作系统管理(而不是JVM)。Spark能够以二进制的形式序列化数据(不包括结构)到off-heap中, 当要操作数据时, 就直接操作off-heap内存. 由于Spark理解schema, 所以知道该如何操作.
off-heap就像地盘, schema就像地图, Spark有地图又有自己地盘了, 就可以自己说了算了, 不再受JVM的限制, 也就不再收GC的困扰了.
通过schema和off-heap, DataFrame解决了RDD的缺点, 但是却丢了RDD的优点. DataFrame不是类型安全的, API也不是面向对象风格的.
import org.apache.spark.sql.types.{DataTypes, StructField, StructType}
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
object Run {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("test").setMaster("local")
val sc = new SparkContext(conf)
sc.setLogLevel("WARN")
val sqlContext = new SQLContext(sc)
/**
* id age
* 1 30
* 2 29
* 3 21
*/
val idAgeRDDRow = sc.parallelize(Array(Row(1, 30), Row(2, 29), Row(4, 21)))
val schema = StructType(Array(StructField("id", DataTypes.IntegerType), StructField("age", DataTypes.IntegerType)))
val idAgeDF = sqlContext.createDataFrame(idAgeRDDRow, schema)
// API不是面向对象的
idAgeDF.filter(idAgeDF.col("age") > 25)
// 不会报错, DataFrame不是编译时类型安全的
idAgeDF.filter(idAgeDF.col("age") > "")
}
}
DataSet
DataSet结合了RDD和DataFrame的优点, 并带来的一个新的概念Encoder
当序列化数据时, Encoder产生字节码与off-heap进行交互, 能够达到按需访问数据的效果, 而不用反序列化整个对象. Spark还没有提供自定义Encoder的API, 但是未来会加入.
下面看DataFrame和DataSet在2.0.0-preview中的实现
下面这段代码, 在1.6.x中创建的是DataFrame
// 上文DataFrame示例中提取出来的
val idAgeRDDRow = sc.parallelize(Array(Row(1, 30), Row(2, 29), Row(4, 21)))
val schema = StructType(Array(StructField("id", DataTypes.IntegerType), StructField("age", DataTypes.IntegerType)))
val idAgeDF = sqlContext.createDataFrame(idAgeRDDRow, schema)
但是同样的代码在2.0.0-preview中, 创建的虽然还叫DataFrame
// sqlContext.createDataFrame(idAgeRDDRow, schema) 方法的实现, 返回值依然是DataFrame
def createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame = {
sparkSession.createDataFrame(rowRDD, schema)
}
但是其实却是DataSet, 因为DataFrame被声明为Dataset[Row]
package object sql {
// ...省略了不相关的代码
type DataFrame = Dataset[Row]
}
因此当我们从1.6.x迁移到2.0.0的时候, 无需任何修改就直接用上了DataSet.
下面是一段DataSet的示例代码
import org.apache.spark.sql.types.{DataTypes, StructField, StructType}
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
object Test {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("test").setMaster("local") // 调试的时候一定不要用local[*]
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
val idAgeRDDRow = sc.parallelize(Array(Row(1, 30), Row(2, 29), Row(4, 21)))
val schema = StructType(Array(StructField("id", DataTypes.IntegerType), StructField("age", DataTypes.IntegerType)))
// 在2.0.0-preview中这行代码创建出的DataFrame, 其实是DataSet[Row]
val idAgeDS = sqlContext.createDataFrame(idAgeRDDRow, schema)
// 在2.0.0-preview中, 还不支持自定的Encoder, Row类型不行, 自定义的bean也不行
// 官方文档也有写通过bean创建Dataset的例子,但是我运行时并不能成功
// 所以目前需要用创建DataFrame的方法, 来创建DataSet[Row]
// sqlContext.createDataset(idAgeRDDRow)
// 目前支持String, Integer, Long等类型直接创建Dataset
Seq(1, 2, 3).toDS().show()
sqlContext.createDataset(sc.parallelize(Array(1, 2, 3))).show()
}
}
参考
Introducing Apache Spark Datasets
APACHE SPARK: RDD, DATAFRAME OR DATASET?
RDD、DataFrame和DataSet的区别
Spark 2.0.0-preview 官方文档
Spark RDD、DataFrame和DataSet的区别的更多相关文章
- RDD、DataFrame和DataSet的区别
原文链接:http://www.jianshu.com/p/c0181667daa0 RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同. RDD ...
- 谈谈RDD、DataFrame、Dataset的区别和各自的优势
在spark中,RDD.DataFrame.Dataset是最常用的数据类型,本博文给出笔者在使用的过程中体会到的区别和各自的优势 共性: 1.RDD.DataFrame.Dataset全都是spar ...
- RDD, DataFrame or Dataset
总结: 1.RDD是一个Java对象的集合.RDD的优点是更面向对象,代码更容易理解.但在需要在集群中传输数据时需要为每个对象保留数据及结构信息,这会导致数据的冗余,同时这会导致大量的GC. 2.Da ...
- spark第七篇:Spark SQL, DataFrame and Dataset Guide
预览 Spark SQL是用来处理结构化数据的Spark模块.有几种与Spark SQL进行交互的方式,包括SQL和Dataset API. 本指南中的所有例子都可以在spark-shell,pysp ...
- Spark RDD(Resilient Distributed Dataset)
基于数据集的处理:从物理存储上加载数据,然后操作数据,然后写入物理存储设备.比如Hadoop的MapReduce. 缺点:1.不适合大量的迭代 2. 交互式查询 3. 不能复用曾经的 ...
- spark结构化数据处理:Spark SQL、DataFrame和Dataset
本文讲解Spark的结构化数据处理,主要包括:Spark SQL.DataFrame.Dataset以及Spark SQL服务等相关内容.本文主要讲解Spark 1.6.x的结构化数据处理相关东东,但 ...
- Spark学习之路(八)—— Spark SQL 之 DataFrame和Dataset
一.Spark SQL简介 Spark SQL是Spark中的一个子模块,主要用于操作结构化数据.它具有以下特点: 能够将SQL查询与Spark程序无缝混合,允许您使用SQL或DataFrame AP ...
- Spark 系列(八)—— Spark SQL 之 DataFrame 和 Dataset
一.Spark SQL简介 Spark SQL 是 Spark 中的一个子模块,主要用于操作结构化数据.它具有以下特点: 能够将 SQL 查询与 Spark 程序无缝混合,允许您使用 SQL 或 Da ...
- spark的数据结构 RDD——DataFrame——DataSet区别
转载自:http://blog.csdn.net/wo334499/article/details/51689549 RDD 优点: 编译时类型安全 编译时就能检查出类型错误 面向对象的编程风格 直接 ...
随机推荐
- 算法笔记_196:历届试题 剪格子(Java)
目录 1 问题描述 2 解决方案 1 问题描述 问题描述 如下图所示,3 x 3 的格子中填写了一些整数. +--*--+--+|10* 1|52|+--****--+|20|30* 1|**** ...
- Navicat如何直接修改表中数据?
Navicat如何直接修改表中数据?
- MariaDB删除重复记录性能测试
删除重复记录,只保留id最大的一条记录的性能测试 环境 测试表的id为是唯一的,或是自增的主键. mysql不能直接写循环,只能写在存储过程里. 存储过程usp_batch_insert的参数num_ ...
- 【Docker】安装tomcat并部署应用
安装tomcat 1.拉取tomcat镜像 docker pull docker.io/tomcat 查看镜像 docker images 2.启动tomcat 首先添加8090端口:firewall ...
- 【svn】Centos搭建svn服务器环境
1.需求描述 在Centos系统中搭建svn服务器环境 2.搭建过程 2.1 yum安装svn [root@localhost /]# yum install svn 2.2 新建目录存储svn目录 ...
- 重叠IO overlapped I/O 运用详解
2009年02月21日 星期六 下午 07:54 I/O设备处理必然让主程序停下来干等I/O的完成,对这个问题有 方法一:使用另一个线程进行I/O.这个方案可行,但是麻烦. ...
- HighCharts画时间趋势图,标示区以及点击事件操作
最近在用HighCharts画趋势图,如果按照设计文档上来画那太复杂了,于是根据自己多年的经验改动了设计文档,添加了highcharts的标示区,然而我也发现,最后一次画highchart趋势图还是在 ...
- Nginx中Laravel的配置
server { listen 80; server_name sub.domain.com; set $root_path '/var/www/html/application_name/publi ...
- NYOJ----次方求模
次方求模 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 求a的b次方对c取余的值 输入 第一行输入一个整数n表示测试数据的组数(n<100)每组测试只有一 ...
- 开源的数据可视化JavaScript图表库:ECharts
ECharts (Enterprise Charts 商业产品图表库)是基于HTML5 Canvas的一个纯Javascript图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表.创新的拖拽 ...