linux设备驱动程序-设备树(2)-device_node转换成platform_device
设备树处理之——device_node转换成platform_device
以下讨论基于linux4.14,arm平台
platform device
设备树的产生就是为了替代driver中过多的platform_device部分的静态定义,将硬件资源抽象出来,由系统统一解析,这样就可以避免各驱动中对硬件资源大量的重复定义,这样一来,几乎可以肯定的是,设备树中的节点最终目标是转换成platform device结构,在驱动开发时就只需要添加相应的platform driver部分进行匹配即可。
在上一节中讲到设备树dtb文件中的各个节点转换成device_node的过程,每个设备树子节点都将转换成一个对应的device_node节点,那么:
是不是每个由设备树节点转换而来的device_node结构体都将转换成对应的?
首先,对于所有的device_node,如果要转换成platform_device,必须满足以下条件:
一般情况下,只对设备树中根的子节点进行转换,也就是子节点的子节点并不处理。但是存在一种特殊情况,就是当某个根子节点的compatible属性为"simple-bus"、"simple-mfd"、"isa"、"arm,amba-bus"时,当前节点中的子节点将会被转换成platform_device节点。
节点中必须有compatible属性。
如果是device_node转换成platform device,这个转换过程又是怎么样的呢?
在老版本的内核中,platform_device部分是静态定义的,其实最主要的部分就是resources部分,这一部分描述了当前驱动需要的硬件资源,一般是IO,中断等资源。
在设备树中,这一类资源通常通过reg属性来描述,中断则通过interrupts来描述,所以,设备树中的reg和interrupts资源将会被转换成platform_device内的struct resources资源。
那么,设备树中其他属性是怎么转换的呢?答案是:不需要转换,在platform_device中有一个成员struct device dev,这个dev中又有一个指针成员struct device_node *of_node,linux的做法就是将这个of_node指针直接指向由设备树转换而来的device_node结构。
例如,有这么一个struct platform_device* of_test.我们可以直接通过of_test->dev.of_node来访问设备树中的信息.
设备树节点到device_node的转换参考一篇博客:设备树dtb到device_node的转换.
大体流程讲完了,接下来从源代码中进行求证。
platform_device转换的开始
事实上,如果从C语言的开始函数start_kernel进行追溯,是找不到platform device这一部分转换的源头的,事实上,这个转换过程的函数是of_platform_default_populate_init(),它被调用的方式是这样一个声明:
arch_initcall_sync(of_platform_default_populate_init);
在linux中,同系列的调用声明还有:
#define pure_initcall(fn) __define_initcall(fn, 0)
#define core_initcall(fn) __define_initcall(fn, 1)
#define core_initcall_sync(fn) __define_initcall(fn, 1s)
#define postcore_initcall(fn) __define_initcall(fn, 2)
#define postcore_initcall_sync(fn) __define_initcall(fn, 2s)
#define arch_initcall(fn) __define_initcall(fn, 3)
#define arch_initcall_sync(fn) __define_initcall(fn, 3s)
#define subsys_initcall(fn) __define_initcall(fn, 4)
#define subsys_initcall_sync(fn) __define_initcall(fn, 4s)
#define fs_initcall(fn) __define_initcall(fn, 5)
#define fs_initcall_sync(fn) __define_initcall(fn, 5s)
#define rootfs_initcall(fn) __define_initcall(fn, rootfs)
#define device_initcall(fn) __define_initcall(fn, 6)
#define device_initcall_sync(fn) __define_initcall(fn, 6s)
#define late_initcall(fn) __define_initcall(fn, 7)
#define late_initcall_sync(fn) __define_initcall(fn, 7s)
这些宏最终都是调用__define_initcall(fn, n),这个数字代表系统启动时被调用的优先级,数字越小,优先级越低,用这一系列宏声明一个新的函数就是将这个函数指针放入内存中一个指定的段内。
#define __define_initcall(fn, id) \
static initcall_t __initcall_##fn##id __used \
__attribute__((__section__(".initcall" #id ".init"))) = fn;
即放入到".initcalln.init"中,n代表优先级,当系统启动时,会依次调用这些段中的函数。
(详细了解linux的initcall机制可以参考我的另一篇博客:linux的initcall机制)
下面我们就进入到of_platform_default_populate_init()中,查看它的执行过程:
static int __init of_platform_default_populate_init(void)
{
...
of_platform_default_populate(NULL, NULL, NULL);
...
}
在函数of_platform_default_populate_init()中,调用了of_platform_default_populate(NULL, NULL, NULL);,传入三个空指针:
const struct of_device_id of_default_bus_match_table[] = {
{ .compatible = "simple-bus", },
{ .compatible = "simple-mfd", },
{ .compatible = "isa", },
#ifdef CONFIG_ARM_AMBA
{ .compatible = "arm,amba-bus", },
#endif /* CONFIG_ARM_AMBA */
{} /* Empty terminated list */
};
int of_platform_default_populate(struct device_node *root,const struct of_dev_auxdata *lookup,struct device *parent)
{
return of_platform_populate(root, of_default_bus_match_table, lookup,
parent);
}
of_platform_default_populate()调用了of_platform_populate()。
需要注意的是,在调用of_platform_populate()时传入了参数of_default_bus_match_table[],这个table是一个静态数组,这个静态数组中定义了一系列的compatible属性:"simple-bus"、"simple-mfd"、"isa"、"arm,amba-bus"。
按照我们上文中的描述,当某个根节点下的一级子节点的compatible属性为这些属性其中之一时,它的一级子节点也将由device_node转换成platform_device.
到底是不是这样呢?接着往下看:
int of_platform_populate(struct device_node *root,const struct of_device_id *matches,const struct of_dev_auxdata *lookup,struct device *parent){
root = root ? of_node_get(root) : of_find_node_by_path("/");
for_each_child_of_node(root, child) {
rc = of_platform_bus_create(child, matches, lookup, parent, true);
if (rc) {
of_node_put(child);
break;
}
}
...
}
首先,从设备树中获取根节点的device_node结构体,然后对每个根目录下的一级子节点调用of_platform_bus_create(),从命名上来看,这部分解析的目的是建立各个bus的platform_device结构,需要注意的是对于of_platform_bus_create(child, matches, lookup, parent, true),matchs参数是上文中提到的compatible静态数组,而lookup和parent依旧为NULL。
接着跟踪代码:
static int of_platform_bus_create(struct device_node *bus,const struct of_device_id *matches,const struct of_dev_auxdata *lookup,struct device *parent, bool strict)
{
dev = of_platform_device_create_pdata(bus, bus_id, platform_data, parent);
if (!dev || !of_match_node(matches, bus))
return 0;
for_each_child_of_node(bus, child) {
pr_debug(" create child: %pOF\n", child);
rc = of_platform_bus_create(child, matches, lookup, &dev->dev, strict);
if (rc) {
of_node_put(child);
break;
}
}
...
}
对于节点的转换,是由of_platform_device_create_pdata(bus, bus_id, platform_data, parent)函数来实现的。
紧接着,在第二行的函数调用中,判断of_match_node(matches,bus)函数的返回值,这个matchs就是compatible的静态数组,这个函数的作用就是判断当前节点的compatible属性是否包含上文中compatible静态数组中的元素,如果不包含,函数返回。
如果当前compatible属性中包含静态数组中的元素,即当前节点的compatible属性有"simple-bus"、"simple-mfd"、"isa"、"arm,amba-bus"其中一项,递归地对当前节点调用of_platform_bus_create(),即将符合条件的子节点转换为platform_device结构。
关于节点转换的细节部分我们接着跟踪of_platform_device_create_pdata(bus, bus_id, platform_data, parent)函数,此时的参数platform_data为NULL。
static struct platform_device *of_platform_device_create_pdata(struct device_node *np,const char *bus_id,void *platform_data,struct device *parent)
{
struct platform_device *dev;
dev = of_device_alloc(np, bus_id, parent);
dev->dev.bus = &platform_bus_type;
dev->dev.platform_data = platform_data;
if (of_device_add(dev) != 0) {
platform_device_put(dev);
goto err_clear_flag;
}
}
struct platform_device终于现出了真身,在这个函数调用中,显示申请并初始化一个platform_device结构体,将传入的device_node链接到成员:dev.fo_node中
赋值bus成员和platform_data成员,platform_data成员为NULL。
再使用of_device_add()将当前生成的platform_device添加到系统中。
对于of_platform_device_create_pdata()函数中的实现,我们需要逐一讲解其中的函数实现:
of_device_alloc()
struct platform_device *of_device_alloc(struct device_node *np,const char *bus_id,struct device *parent)
{
//统计reg属性的数量
while (of_address_to_resource(np, num_reg, &temp_res) == 0)
num_reg++;
//统计中断irq属性的数量
num_irq = of_irq_count(np);
//根据num_irq和num_reg的数量申请相应的struct resource内存空间。
if (num_irq || num_reg) {
res = kzalloc(sizeof(*res) * (num_irq + num_reg), GFP_KERNEL);
if (!res) {
platform_device_put(dev);
return NULL;
}
//设置platform_device中的num_resources成员
dev->num_resources = num_reg + num_irq;
//设置platform_device中的resource成员
dev->resource = res;
//将device_node中的reg属性转换成platform_device中的struct resource成员。
for (i = 0; i < num_reg; i++, res++) {
rc = of_address_to_resource(np, i, res);
WARN_ON(rc);
}
//将device_node中的irq属性转换成platform_device中的struct resource成员。
if (of_irq_to_resource_table(np, res, num_irq) != num_irq)
pr_debug("not all legacy IRQ resources mapped for %s\n",
np->name);
}
//将platform_device的dev.of_node成员指针指向device_node。
dev->dev.of_node = of_node_get(np);
//将platform_device的dev.fwnode成员指针指向device_node的fwnode成员。
dev->dev.fwnode = &np->fwnode;
//设备parent为platform_bus
dev->dev.parent = parent ? : &platform_bus;
}
首先,函数先统计设备树中reg属性和中断irq属性的个数,然后分别为它们申请内存空间,链入到platform_device中的struct resources成员中。除了设备树中"reg"和"interrupt"属性之外,还有可选的"reg-names"和"interrupt-names"这些io中断资源相关的设备树节点属性也在这里被转换。
将相应的设备树节点生成的device_node节点链入到platform_device的dev.of_node中。
of_device_add
int of_device_add(struct platform_device *ofdev){
...
return device_add(&ofdev->dev);
}
将当前platform_device中的struct device成员注册到系统device中,并为其在用户空间创建相应的访问节点。
总结
总的来说,将device_node转换为platform_device的过程还是比较简单的。
整个转换过程的函数调用关系是这样的:
of_platform_default_populate_init()
|
of_platform_default_populate();
|
of_platform_populate();
|
of_platform_bus_create()
_____________________|_________________
| |
of_platform_device_create_pdata() of_platform_bus_create()
_________________|____________________
| |
of_device_alloc() of_device_add()
好了,关于linux设备树中device_node到platform_device的转换过程的讨论就到此为止啦,如果朋友们对于这个有什么疑问或者发现有文章中有什么错误,欢迎留言
原创博客,转载请注明出处!
祝各位早日实现项目丛中过,bug不沾身.
linux设备驱动程序-设备树(2)-device_node转换成platform_device的更多相关文章
- 设备树处理之——device_node转换成platform_device【转】
转自:https://www.cnblogs.com/downey-blog/p/10486568.html 以下讨论基于linux4.14,arm平台 platform device 设备树的产生就 ...
- linux设备驱动程序-设备树(1)-dtb转换成device_node
linux设备驱动程序-设备树(1)-dtb转换成device_node 本设备树解析基于arm平台 从start_kernel开始 linux最底层的初始化部分在HEAD.s中,这是汇编代码,我们暂 ...
- linux设备驱动程序-设备树(3)-设备树多级子节点的转换
linux设备驱动程序--设备树多级子节点的转换 在上一章:设备树处理之--device_node转换成platform_device中,有提到在设备树的device_node到platform_de ...
- linux设备驱动程序-设备树(0)-dtb格式
linux设备树dtb格式 设备树的一般操作方式是:开发人员根据开发需求编写dts文件,然后使用dtc将dts编译成dtb文件. dts文件是文本格式的文件,而dtb是二进制文件,在linux启动时被 ...
- Linux c字符串中不可打印字符转换成16进制
本文由 www.169it.com 搜集整理 如果一个C字符串中同时包含可打印和不可打印的字符,如果想将这个字符串写入文件,同时方便打开文件查看或者在控制台中打印出来不会出现乱码,那么可以将字符串中的 ...
- Linux中将一个GBK编码的文件转换成UTF-8编码文件
Linux中将一个GBK编码的文件转换成UTF-8编码文件 使用iconv 命令iconv -f GBK -t UTF-8 file1 -o file2 输出另一个文件,然后再覆盖源文件内容
- Linux下面将windows写的脚本转换成 Linux 格式的文件
1.接着上一篇blog 发现有一个问题 vim 打开文件 发现最下面有一行信息: 2. 里面有一些 不一样的地方. linux里面没法执行 ,如果想执行的话 可以输入命令 :set fileforma ...
- linux设备驱动程序-i2c(1):i2c总线的添加与实现
linux设备驱动程序-i2c(1):i2c总线的添加与实现 (基于4.14内核版本) 在上一章节linux设备驱动程序-i2c(0)-i2c设备驱动源码实现中,我们演示了i2c设备驱动程序的源码实现 ...
- 用 unoconv 将 xls 转换成 csv
在 Linux 下,用 unoconv 将 xls 转换成 csv. unoconv -f csv -v input.xlsx
随机推荐
- CodeForces - 573A (简单数论+模拟)
题意 https://vjudge.net/problem/CodeForces-573A 有n个数ai ,你可以把每个数任意次×2 或×3 ,问能否最终使得每个数相等. 思路 x2和x3只能改变数 ...
- 爬虫---lxml简单操作
前几篇写了一些Beautiful Soup的一些简单操作,也拿出来了一些实例进行实践,今天引入一个新的python库lxmt,lxmt也可以完成数据的爬取哦 什么是lxml lxml是python的一 ...
- 常见的Dos命令大全
打开cmd: Win键+R 输入cmd; 常用的Dos命令: 1.盘符切换: 2.打开文件目录: dir 3.清理屏幕: cls 4.退出: exit 5.查看本机IP地址:ipconfig ...
- go读取配置模块viper
这个可以常常和cobra配合. 来个demo package main import ( "fmt" "github.com/spf13/viper" ) fu ...
- 28道java基础面试题-下
28道java基础面试题下 15.Java语言如何进行异常处理,关键字:throws.throw.try.catch.finally分别如何使用? 答:Java通过面向对象的方法进行异常处理,把各种不 ...
- luoguP4094 [HEOI2016/TJOI2016]字符串
题意 考虑二分答案\(mid\),现在我们要判断\(s[c...c+mid-1]\)是否在\(s[a...b]\)出现过. 首先找到\(s[c...c+mid-1]\)所在的状态: 建出\(paren ...
- Zuul中聚合Swagger的坑
每个服务都有自己的接口,通过Swagger来管理接口文档.在服务较多的时候我们希望有一个统一的入口来进行文档的查看,这个时候可以在zuul中进行文档的聚合显示. 下面来看下具体的整合步骤以及采坑记录. ...
- 解惑:如何使用html+css+js实现旋转相册,立方体相册等动画效果
解惑:如何使用html+css+js实现旋转相册,立方体相册等动画效果 一.前言 最初还是在抖音上看到可以使用简单地代码实现炫酷的网页效果的,但是想要找到可以运行的代码还是比较困难的,最近突然想起就在 ...
- win10 配置python3虚拟环境
1.安装virtualenv pip install virtaulenv 2.创建虚拟环境 env03 virtualenv env03 3.切换到进入虚拟换环境脚本目录(activate) cd ...
- Windows重要的win键
win+↓ 当前窗口操作,多按几下就缩没了(同理,其他箭头也一样) win+e 打开此电脑 win+v 展开剪切板 win+k 访问蓝牙 win+a win10的通知 win+d (切到桌面,再用能切 ...