Support Vector Machine

[学习、内化]——讲出来才是真的听懂了,分享在这里也给后面的小伙伴点帮助。
learn from:
https://www.youtube.com/watch?v=QSEPStBgwRQ&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49&index=29
台湾大学李宏毅教授,讲授课程很用心,能把我之前看过却不理解的知识很易懂、精彩的讲出来——respect

1、SVM

SVM是一个经典的二分类、监督学习算法。与logistic regression很像(需要先学此基础),主要独特之处有两点:

1.loss fuction 用 Hinge Loss
2.模型 f(x) 使用了 kernel method

下面依次理解这两个关键,来学习SVM。

2、Hinge Loss

2.1

SVM 算法结构与 logistic regression 或者 binary classification 基本一样:

在解决上面原L(f)不能做梯度下降时,与logistic regression使用 sigmoid + cross entropy不同,使用Hinge Loss,从而产生了Linear SVM

Hinge:

logistic regression 与 Linear SVM两个算法唯一的不同之处就是使用了不同的loss function,前者使用的sigmoid+cross,而后者用 hinge 。

2.2

下面讲讲 loss function 那些事,理解这些后,将对 SVM 的 HInge 有很深的理解。
因为原本的loss fuction(下图中标①的loss function,下文简称L①)不能微分所以无法做梯度下降 ,所以我们要做的就是用一个可以微分的loss function(下文简称L②)来近似代替L①。我们知道L①的作用:当预测值与实际值相等时,L=0,不相等时,L=1(函数括号里成立时,函数值=0,否则为1,不清楚的可以查一下 kronecker 记号)。binary classification 中:

而y只等于+1或-1,所以预测正确时,即g(x)与y相等时,y一定与f(x)同号,预测错误时异号。(以0点为界,y·f(x)越大即就是预测正确,y·f(x)越小即为预测错误,下图中用yf(x)作图分析并说Larger value, smaller loss,应该是这样理解的)所以我们需要找这样一个L②来代替L①:当同号时,loss接近0;当异号时,loss很大。

下面是尝试使用不同的L②:

square loss: 不行。

连我们上面分析L②应有的性质都不满足,而已早在 logistic regression 里就知道了 square loss 是不适用这种离散型任务的。

sigmoid+square

sigmoid+cross entropy

Hinge

Hinge 与 sigmiod+cross entropy 这两个loss function的区别:对于结果已经正确的样本数据,hinge 就不再继续产生loss用于继续提升,而sigmiod+cross entropy 会继续产生loss 使其再继续远离刚刚能正确分类的点(不满足于刚刚超过阈值)。

2.3

确定好了loss function之后,就可以做梯度下降了。

c(w)有很多都为0,不=0的那些c(w)即为 support vector.
SVM有很好的鲁棒性(robust),因为有很多数据(即那些c(w)=0的)不会影响结果,而 logistic regression 相比就没有这样的鲁棒性。

2.4 Linear SVM的另一种表示形式

3、kernel trick

下面是花书(Deep Learning)中关于SVM的部分,主要就是在说kernel,说的比较宏观比较笼统,先看一下有利于下面深入学习。

3.1

先概括一下我自己理解的kernel trick:利用很多机器学习算法的模型参数都能写成样本间内积的特点,利用核函数代替先转换空间(即非线性ϕ(x))再内积的方法,来学习非线性模型。

先知道一个事实:w是x的线性组合
听起来可能难以相信:训练出的模型参数w是数据x的线性组合?解释一下:梯度下降更新参数w时,c(w)只能取0,±1,取0不用说了,取±1时,w就是在±学习率*x

下面看直接看PPT式子就行了。


3.2 径向基函数

径向基函数是一个取值仅仅依赖于离原点距离的实值函数,也就是Φ(x)=Φ(‖x‖),或者还可以是到任意一点c的距离,c点称为中心点,也就是Φ(x,c)=Φ(‖x-c‖)。任意一个满足Φ(x)=Φ(‖x‖)特性的函数Φ都叫做径向基函数,标准的一般使用欧氏距离(也叫做欧式径向基函数),尽管其他距离函数也是可以的。在神经网络结构中,可以作为全连接层和ReLU层的主要函数。

3.3 与神经网络

3.3.1 sigmiod kernel 与神经网络

用sigmiod kernel就相当于一个只有一层hidden layer的神经网络。
每个神经元的参数就是一个输入的data。神经元的个数 = support vector的个数。

3.3.1 SVM 与神经网络

其实kernel是可学习的,但是可学习性没有神经网络参数强,只能给几点kernel然后学习出他们的组合。
只有一个kernel相当于只有一层隐藏层,由多个Kernel组合相当于由多个隐藏层。

[机器学习] SVM——Hinge与Kernel的更多相关文章

  1. [机器学习]SVM原理

    SVM是机器学习中神一般的存在,虽然自深度学习以来有被拉下神坛的趋势,但不得不说SVM在这个领域有着举足轻重的地位.本文从Hard SVM 到 Dual Hard SVM再引进Kernel Trick ...

  2. 文本分类学习 (五) 机器学习SVM的前奏-特征提取(卡方检验续集)

    前言: 上一篇比较详细的介绍了卡方检验和卡方分布.这篇我们就实际操刀,找到一些训练集,正所谓纸上得来终觉浅,绝知此事要躬行.然而我在躬行的时候,发现了卡方检验对于文本分类来说应该把公式再变形一般,那样 ...

  3. 机器学习——SVM详解(标准形式,对偶形式,Kernel及Soft Margin)

    (写在前面:机器学习入行快2年了,多多少少用过一些算法,但由于敲公式太过浪费时间,所以一直搁置了开一个机器学习系列的博客.但是现在毕竟是电子化的时代,也不可能每时每刻都带着自己的记事本.如果可以掏出手 ...

  4. 机器学习——支持向量机(SVM)之核函数(kernel)

    对于线性不可分的数据集,可以利用核函数(kernel)将数据转换成易于分类器理解的形式. 如下图,如果在x轴和y轴构成的坐标系中插入直线进行分类的话, 不能得到理想的结果,或许我们可以对圆中的数据进行 ...

  5. 程序员训练机器学习 SVM算法分享

    http://www.csdn.net/article/2012-12-28/2813275-Support-Vector-Machine 摘要:支持向量机(SVM)已经成为一种非常受欢迎的算法.本文 ...

  6. 机器学习技法:05 Kernel Logistic Regression

    Roadmap Soft-Margin SVM as Regularized Model SVM versus Logistic Regression SVM for Soft Binary Clas ...

  7. 机器学习--------SVM

    #SVM的使用 (结合具体代码说明,代码参考邹博老师的代码) 1.使用numpy中的loadtxt读入数据文件 data:鸢尾花数据 5.1,3.5,1.4,0.2,Iris-setosa 4.9,3 ...

  8. 机器学习—SVM

    一.原理部分: 依然是图片~ 二.sklearn实现: import pandas as pd import numpy as np import matplotlib.pyplot as plt i ...

  9. logistic regression svm hinge loss

    二类分类器svm 的loss function 是 hinge loss:L(y)=max(0,1-t*y),t=+1 or -1,是标签属性. 对线性svm,y=w*x+b,其中w为权重,b为偏置项 ...

随机推荐

  1. 12 jQuery的ajax

    什么是ajax AJAX = 异步的javascript和XML(Asynchronous Javascript and XML) 简言之,在不重载整个网页的情况下,AJAX通过后台加载数据,并在网页 ...

  2. Windows新终端中玩转ASCII和Emoji游戏的正确姿势

    Windows新终端中玩转ASCII和Emoji游戏的正确姿势 前一段时间,我搬运了几个Windows Terminal中玩游戏的视频,详情请看 发布在即!来一睹官方团队如何玩转 Windows Te ...

  3. spring 5.x 系列第3篇 —— spring AOP (xml配置方式)

    文章目录 一.说明 1.1 项目结构说明 1.2 依赖说明 二.spring aop 2.1 创建待切入接口及其实现类 2.2 创建自定义切面类 2.3 配置切面 2.4 测试切面 附: 关于切面表达 ...

  4. mac下mysql的卸载和安装

    1. mysql的卸载 1 sudo rm /usr/local/mysql 2 sudo rm -rf /usr/local/mysql* 3 sudo rm -rf /Library/Startu ...

  5. hdoj1009 FatMouse' Trade——贪心算法

    贪心思路:按单位猫粮能兑换到的javaBean从大到小将组合进行排序,总是在当前兑换尽可能多的javabeans 问题描述:点击打开链接 hdoj1009 FatMouse's Trade 源代码: ...

  6. 分布式全局ID生成方案

    传统的单体架构的时候,我们基本是单库然后业务单表的结构.每个业务表的ID一般我们都是从1增,通过AUTO_INCREMENT=1设置自增起始值,但是在分布式服务架构模式下分库分表的设计,使得多个库或多 ...

  7. LSI 9211-8I阵列卡IR模式Update为IT模式操作步骤!

    以下是DOS系统环境下操作(也可以在windows.linux环境下,只要找到对应的tool就可以)相对应的tool官网可以下载 链接:https://www.broadcom.com/support ...

  8. ajax 的登录认证

    在models中 先创建一个表 from django.db import models # Create your models here. class UserInfo(models.Model) ...

  9. Java内存模型与内存结构

    Java内存模型 一.简介 Java内存模型(JMM)主要是为了规定线程和内存之间的一些关系:根据JMM的设计,系统存在一个主内存(Main Memory)和工作内存(Work Memory),Jav ...

  10. 好用的在线画图工具processon

    ProcessOn是一款基于SaaS的前沿.高效线上作图工具,它将Visio.Xmind等专业作图工具搬到了"云端" 注册链接:https://www.processon.com/ ...