【2019.8.9 慈溪模拟赛 T2】摘Galo(b)(树上背包)
树上背包
这应该是一道树上背包裸题吧。
众所周知,树上背包的朴素\(DP\)是\(O(nm^2)\)的。
但对于这种体积全为\(1\)的树上背包,我们可以通过记\(Size\)优化转移时的循环上界,做到\(O(nm)\)的。
呃,复杂度为什么是这样的我也很迷,证明我也不会啊。。。
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 100000
#define NK 10200000
#define LL long long
#define add(x,y) (e[++ee].nxt=lnk[x],e[lnk[x]=ee].to=y)
#define min(x,y) ((x)<(y)?(x):(y))
#define Gmax(x,y) ((x<(y))&&(x=(y)))
using namespace std;
int n,m,ee,a[N+5],lnk[N+5];struct edge {int to,nxt;}e[N<<1];
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
char c,*A,*B,FI[FS];
public:
I FastIO() {A=B=FI;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
}F;
class TreeDper//树上背包
{
private:
int g[N+5];LL *f[N+5],_f[NK+5];
I void DP(CI x)
{
for(RI i=(g[x]=1,lnk[x]),j,k,lim1,lim2;i;i=e[i].nxt)//枚举儿子
for(DP(e[i].to),g[x]+=g[e[i].to],j=min(g[x],m);~j;--j)//记Size优化转移
for(k=min(g[e[i].to],m-j);k;--k) Gmax(f[x][j+k],f[x][j]+f[e[i].to][k]);//记Size优化转移
Gmax(f[x][1],a[x]);//选自己
}
public:
I void Solve()
{
RI i,j;LL ans=0;for(i=1;i<=n;++i) f[i]=&_f[(i-1)*(m+1)+1];//题目中没给出n,k具体范围,只能用指针了
for(DP(1),i=1;i<=m;++i) Gmax(ans,f[1][i]);printf("%lld",ans);//输出答案
}
}T;
int main()
{
freopen("b.in","r",stdin),freopen("b.out","w",stdout);
RI i,x;for(F.read(n),F.read(m),++m,i=2;i<=n;++i) F.read(x),F.read(a[i]),add(x,i);
return T.Solve(),0;
}
【2019.8.9 慈溪模拟赛 T2】摘Galo(b)(树上背包)的更多相关文章
- 【2019.8.15 慈溪模拟赛 T2】组合数(binom)(卢卡斯定理+高维前缀和)
卢卡斯定理 题目中说到\(p\)是质数. 而此时要求组合数向质数取模的结果,就可以用卢卡斯定理: \[C_x^y=C_{x\ div\ p}^{y\ div\ p}\cdot C_{x\ mod\ p ...
- 【2019.8.6 慈溪模拟赛 T2】树上路径(tree)(Trie)
从暴力考虑转化题意 考虑最暴力的做法,我们枚举路径的两端,然后采用类似求树上路径长度的做法,计算两点到根的贡献,然后除去\(LCA\)到根的贡献两次. 即,设\(v_i\)为\(i\)到根路径上的边权 ...
- 【2019.8.7 慈溪模拟赛 T2】环上随机点(ran)(自然算法)
简单声明 我是蒟蒻不会推式子... 所以我用的是乱搞做法... 大自然的选择 这里我用的乱搞做法被闪指导赐名为"自然算法",对于这种输入信息很少的概率题一般都很适用. 比如此题,对 ...
- 【2019.8.8 慈溪模拟赛 T2】query(query)(分治+分类讨论)
分治 首先,我们考虑分治处理此问题. 每次处理区间\([l,r]\)时,我们先处理完\([l,mid]\)和\([mid+1,r]\)两个区间的答案,然后我们再考虑计算左区间与右区间之间的答案. 处理 ...
- 【2019.8.12 慈溪模拟赛 T2】汪哥图(wang)(前缀和)
森林 考虑到题目中给出条件两点间至多只有一条路径. 就可以发现,这是一个森林. 而森林有一个很有用的性质. 考虑对于一棵树,点数-边数=\(1\). 因此对于一个森林,点数-边数=连通块个数. 所以, ...
- 【2019.8.14 慈溪模拟赛 T2】黑心老板(gamble)(2-SAT)
\(2-SAT\) 考虑每个点只能选择\(R\)或\(B\),可以看作选\(0\)或\(1\). 然后对于给出的关系式,若其中一个位置满足关系式,另两个位置就必须不满足关系式,这样就可以对于每个关系式 ...
- 【2019.8.11下午 慈溪模拟赛 T2】数数(gcd)(分块+枚举因数)
莫比乌斯反演 考虑先推式子: \[\sum_{i=l}^r[gcd(a_i,G)=1]\] \[\sum_{i=l}^r\sum_{p|a_i,p|G}\mu(p)\] \[\sum_{p|G}\mu ...
- 【2019.8.11上午 慈溪模拟赛 T2】十七公斤重的文明(seventeen)(奇偶性讨论+动态规划)
题意转化 考虑我们对于集合中每一个\(i\),若\(i-2,i+k\)存在,就向其连边. 那么,一个合法的集合就需要满足,不会存在环. 这样问题转化到了图上,就变得具体了许多,也就更容易考虑.求解了. ...
- 【2019.8.15 慈溪模拟赛 T1】插头(plugin)(二分+贪心)
二分 首先,可以发现,最后的答案显然满足可二分性,因此我们可以二分答案. 然后,我们只要贪心,就可以验证了. 贪心 不难发现,肯定会优先选择能提供更多插座的排插,且在确定充电器个数的情况下,肯定选择能 ...
随机推荐
- HTML文件通过jQuery引入其他HTML文件报错has been blocked by CORS policy
HTML通过jQuery引入模板 完整报错 新创建一个chrome快捷方式,命名为chrome-debug 右键属性,在目标后添加参数,原始路径如下 "C:\Program Files (x ...
- vim 下修改tab键为四个空格
最近在运行python的时候,发现tab键在在运行过程中无法使用,报错:IndentationError: unindent does not match any outer indentation ...
- 大话设计模式Python实现-职责链模式
职责链模式(Chain Of Responsibility):使多个对象都有机会处理请求,从而避免发送者和接收者的耦合关系.将对象连成链并沿着这条链传递请求直到被处理 下面是一个设计模式的demo: ...
- Java反射简单使用--第一次细致阅读底层代码
1:所写的东西都经过验证,保证正确,环境jdk8,eclipse2:在例子中,尽量以生产环境中实际代码为例,那种固定值什么的没什么意义 问题: 1:想获取调用方法所需要的参数 2:参数是以json形式 ...
- zookeeper C client API 和zkpython 的安装
1 zookeeper C API 安装 yum install -y ant 在解压的zookeeper包中执行: ant compile_jute 进入src/c 安装:yum -y instal ...
- PHP TP框架自定义打印函数P
效果如下,有个灰色背景,也不一定是灰色可以改 代码: //传递数据以易于阅读的样式格式化后输出function p($data){ // 定义样式 $str='<pre style=" ...
- Java 类加载机制(阿里)-何时初始化类
(1)阿里的面试官问了两个问题,可以不可以自己写个String类 答案:不可以,因为 根据类加载的双亲委派机制,会去加载父类,父类发现冲突了String就不再加载了; (2)能否在加载类的时候,对类的 ...
- operator ->重载是怎么做到的?
https://stackoverflow.com/questions/8777845/overloading-member-access-operators-c struct client { in ...
- PHP+Ajax手机移动端发红包实例
基本流程:当输入完红包数量和总金额后,PHP会根据这两个值进行随机分配每个金额,保证每个人都能领取到一个红包,且每个红包金额不等,并且所有红包金额总额等于总金额. 实现原理:设定总金额为10元,有N个 ...
- MySQL学习——存储引擎
MySQL学习——存储引擎 摘要:本文主要学习了MySQL数据库的存储引擎. 什么是存储引擎 数据库存储引擎是数据库底层软件组件,数据库管理系统使用数据引擎进行创建.查询.更新和删除数据操作.不同的存 ...