strGame:博弈论,trie
挺有意思的一道题。初探博弈论。
最好自己思考?
我们先考虑只有1轮游戏的情况。
这题明显要在字符串上一位一位地走,所以对字符串建立起trie。
最终建立起的trie的叶节点就是必败位置了。
对于非叶节点,如果它有一个儿子是必败节点,那么这个节点就是必胜节点了。(类似与mex函数)
那么如果根节点必胜,那么就是先手必胜,否则就是后手必胜了。
如果最后一轮后手必胜,那么两个人就需要争夺最后一轮的后手,所以他们要赢倒数第二轮。
而倒数第二轮和最后一轮是一样的,那么倒数第二轮也是后手必胜。倒数第二轮的后手整场游戏也必胜。
以此类推到倒数第三轮,倒数第四轮。。。直到第一轮,都一样。
所以,如果某一轮中后手必胜,那么整场游戏后手Dirty必胜。
剩下的情况就是先手必胜,那么就是要争夺先手,那么就要尽量输掉倒数第二轮。
如何判定先手能否必定让自己输掉一轮游戏?
只要把trie树的叶节点改为必胜节点就好了,再跑一遍。
那么如果先手可以必定让自己输掉一轮游戏,也能必定让自己赢一轮游戏。
那么除了最后一轮以外他都可以让自己输掉以取得先手,直到最后一轮让自己取胜。
所以,如果某一轮中先手必胜,先手在相反游戏中也必胜(即可以让自己必定输掉),那么整场游戏先手Pure必胜。
剩下的就是先手在一轮游戏中必胜,但是不能在相反游戏中取胜(即自己不能必定输掉)。
最后一轮是先手必胜。
倒数第二轮中要争夺最后一轮的先手,故要输掉,所以倒数第二轮中的后手在整场游戏中必胜。
倒数第三轮中要争夺倒数第二轮的后手,要赢,所以倒数第三轮的先手在整场游戏中必胜。
以此类推。。。
所以,如果一轮游戏先手必胜,而相反游戏后手必胜(即先手不能让自己输掉),总轮数为奇数时,先手Pure必胜。否则,后手Dirty必胜。
好题。
自己思考酣畅淋漓(数学自习灵感++)
#include<cstdio>
#include<cstring>
using namespace std;
int k,trie[][],w[][],cnt,n,rt,len;char s[];
void insert(int &p,int al){
if(!p)p=++cnt;if(al==len)return;
insert(trie[p][s[al]-'a'],al+);
}
void dfs(int p){
int hs=;w[][p]=w[][p]=;
for(int i=;i<=;++i)if(trie[p][i]){hs=;break;}
if(!hs){w[][p]=;w[][p]=;return;}
for(int i=;i<=;++i)if(trie[p][i]){
dfs(trie[p][i]);
if(!w[][trie[p][i]])w[][p]=;
if(!w[][trie[p][i]])w[][p]=;
}
}
int main(){
int t;scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&k);rt=cnt=;memset(trie,,sizeof trie);
for(int i=;i<=n;++i)scanf("%s",s),len=strlen(s),insert(rt,);
dfs(rt);//for(int i=1;i<=cnt;++i)printf("%d %d\n",w[0][i],w[1][i]);
if(!w[][rt])puts("Dirty");
else if(w[][rt])puts("Pure");
else if(k&)puts("Pure");
else puts("Dirty");
}
}
strGame:博弈论,trie的更多相关文章
- 20181228 模拟赛 T3 字符串游戏 strGame 博弈论 字符串
3 字符串游戏(strGame.c/cpp/pas) 3.1 题目描述 pure 和 dirty 决定玩 T 局游戏.对于每一局游戏,有n个字符串,并且每一局游戏由K轮组成.具体规则如下:在每一轮 ...
- [杂题]:staGame(博弈论+Trie树+DFS)
题目描述 $pure$和$dirty$决定玩$T$局游戏.对于每一局游戏,有$n$个字符串,并且每一局游戏由$K$轮组成.具体规则如下:在每一轮游戏中,最开始有一个空串,两者轮流向串的末尾添加一个字符 ...
- SPOJ COT3.Combat on a tree(博弈论 Trie合并)
题目链接 \(Description\) 给定一棵\(n\)个点的树,每个点是黑色或白色.两个人轮流操作,每次可以选一个白色的点,将它到根节点路径上的所有点染黑.不能操作的人输,求先手是否能赢.如果能 ...
- SPOJ11414 COT3 博弈论 + Trie树合并
考虑对于每个子树从下往上依次考虑 对于叶子节点而言,如果可以染色,那么其\(sg\)值为\(1\),否则为\(0\) 考虑往上合并 如果选择了\(x\),那么后继状态就是其所有子树 如果选了其他子树中 ...
- HY 的惩罚 (Trie 树,博弈论)
[问题描述] hy 抄题解又被老师抓住了,现在老师把他叫到了办公室. 老师要 hy 和他玩一个游 戏.如果 hy 输了,老师就要把他开除信息组; 游戏分为 k 轮.在游戏开始之前,老师会将 n 个由英 ...
- CodeForces 455B A Lot of Games (博弈论)
A Lot of Games 题目链接: http://acm.hust.edu.cn/vjudge/contest/121334#problem/J Description Andrew, Fedo ...
- 【10.4校内测试】【轮廓线DP】【中国剩余定理】【Trie树+博弈】
考场上几乎是一看就看出来轮廓线叻...可是调了两个小时打死也过不了手出样例!std发下来一对,特判对的啊,转移对的啊,$dp$数组竟然没有取max!!! 某位考生当场死亡. 结果下午又请了诸位dala ...
- 【基础操作】博弈论 / SG 函数详解
博弈死我了……(话说哪个小学生会玩博弈论提到的这类弱智游戏,还取石子) 先推荐两个文章链接:浅谈算法——博弈论(从零开始的博弈论) 博弈论相关知识及其应用 This article was updat ...
- 数据结构 | 30行代码,手把手带你实现Trie树
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是算法和数据结构专题的第28篇文章,我们一起来聊聊一个经典的字符串处理数据结构--Trie. 在之前的4篇文章当中我们介绍了关于博弈论的 ...
随机推荐
- Scala 占位符在REPL和Eclipse/IDEA中初始化变量问题
占位符在REPL和Eclipse/IDEA中初始化变量问题: 占位符初始化,如果是局部变量,都会报错!只能在全局变量中使用! REPL: Eclipse: IDEA: 如果是类的属性,却就是对的.
- 快学Scala 第四课 (多维数组,与Java集合的互操作)
Scala二维数组的定义: val arr2 = Array.ofDim[String](2, 2) arr2(0)(0) = "aa" arr2(1)(0) = "bb ...
- 重学Golang系列(一): 深入理解 interface和reflect
前言 interface(即接口),是Go语言中一个重要的概念和知识点,而功能强大的reflect正是基于interface.本文即是对Go语言中的interface和reflect基础概念和用法的一 ...
- 一致性哈希(PHP核心技术与最佳实践)
<?php /** * 分布式缓存部署方案 * 当有1台cache服务器不能满足我们的需求,我们需要布置多台来做分布式服务器,但是 * 有个问题,怎么确定一个数据应该保存到哪台服务器上呢? * ...
- 两句话掌握python最难知识点——元类
千万不要被所谓“元类是99%的python程序员不会用到的特性”这类的说辞吓住.因为每个中国人,都是天生的元类使用者 学懂元类,你只需要知道两句话: 道生一,一生二,二生三,三生万物 我是谁?我从哪来 ...
- pycharm 激活码 2019/12最新福利(3)
K6IXATEF43-eyJsaWNlbnNlSWQiOiJLNklYQVRFRjQzIiwibGljZW5zZWVOYW1lIjoi5o6I5p2D5Luj55CG5ZWGOiBodHRwOi8va ...
- 网络游戏开发-客户端2(自定义websocket协议格式)
Egret官方提供了一个Websocket的库,可以让我们方便的和服务器长连接交互. 标题写的时候自定义websocket的协议格式.解释一下,不是说我们去动websocket本身的东西,我们是在we ...
- powershell加载EXE进内存运行
当实战中我们想在目标上运行一些相当复杂的功能,这些功能常是 EXE 文件的一部分.我不想直接在目标上放置一个二进制文件,因为这样可能会触发反病毒机制.一个很好的思路就是将二进制文件嵌入到 Powers ...
- 开启sql语句监控
开启sql执行语句监控 set global general_log=on; set global_log_output='table'; 修改mysql配置文件,在[mysqld]中加入 gener ...
- libevent::事件::定时器
#include <cstdio> #include <errno.h> #include <sys/types.h> #include <event.h&g ...