How to use DataFrame ?

简介 分布式数据集(常用于数据分析)

创建 DataFrame

查看与筛选数据行列选取

DataFrame 数据操作增删改

一、About DataFrame

  DataFrame 是 Python 中 Pandas 库中的一种数据结构,是一种二维表。它类似 excel,或许说它可能有点像 matlab 的矩阵,但是 matlab 的矩阵只能放数值型值(当然 matlab 也可以用 cell 存放多类型数据),DataFrame 的单元格可以存放数值、字符串等,这就和 excel 表很像。

  同时 DataFrame 可以设置列名 columns 与行名 index,可以通过像 matlab 一样通过位置获取数据也可以通过列名和行名定位。

二、创建 DataFrame

版本声明:Python 3.6.7

import pandas as pd
import numpy as np  # pandas 常与 numpy 一起配合使用

如果还没安装直接在 cmd 里 pip 安装:

> pip install pandas
> pip install numpy

1、直接创建

  可以直接使用 pandas 的 DataFrame 函数创建,比如随机创建一个 4*4 的 DataFrame:

  np.random.randn(4,4):存放在DataFrame里的数据

  index=list('ABCD'):行名(或者可以说是索引)

  columns=list('ABCD'):列名

  后两个参数可以使用 list 输入,但是注意,这个list的长度要和 DataFrame 的大小匹配,不然会报错。当然,这两个参数是可选的,你可以选择不设置。而且发现,这两个list是可以一样的,但是每行每列的名字在 index 或 columns 里要是唯一的。

  小数据量,手工键入数据:

df2 = pd.DataFrame([[1,2,3,4],[2,3,4,5], [3,4,5,6],[4,5,6,7]],
index=(['r1','r2','r3','r4']),
columns=(['c1','c2','c3','c4']))

2、使用字典创建

  使用 DataFrame 方法,但是字典的每个 key 的 value 代表一列,而 key 是这一列的列名:

三、查看与筛选数据

1、查看列的数据类型:使用 dtypes 方法可以查看各列的数据类型

2、查看DataFrame的头尾

  使用 head 可以查看前几行的数据,默认的是前5行,不过也可以自己设置;

  使用 tail 可以查看后几行的数据,默认也是5行,参数可以自己设置;

3、查看行名与列名

  使用 index 查看行名,columns 查看列名

In [6]: df3.dtypes
Out[6]:
name object
age int64
gender object
dtype: object In [7]: df3.head(1)
Out[7]:
name age gender
0 张三 18 男 In [8]: df3.tail(1)
Out[8]:
name age gender
2 王五 22 男 In [9]: df3.index
Out[9]: RangeIndex(start=0, stop=3, step=1) In [10]: df3.columns
Out[10]: Index(['name', 'age', 'gender'], dtype='object')

4、查看数据值

  使用 values 可以查看 DataFrame 里的数据值,返回的是一个数组:

# 查看所有的数据值
In [11]: df3.values
Out[11]:
array([['张三', 18, '男'],
['李四', 20, '女'],
['王五', 22, '男']], dtype=object)
# 查看某一列所有的数据值
In [12]: df3['name'].values
Out[12]: array(['张三', '李四', '王五'], dtype=object)

  使用 loc 或者 iloc (切片)查看数据值,区别是 loc 是根据行名,iloc 是根据数字索引:

  ①loc:(location),works on labels in the index,只能使用字符型标签来索引数据,不能使用数字来索引数据,不过有特殊情况,当数据框dataframe的行标签或者列标签为数字,loc就可以来其来索引。

  ②iloc:(i=integer),works on the positions in the index (so it only takes integers),主要使用数字来索引数据,而不能使用字符型的标签来索引数据。

In [13]: df3.loc[1]
Out[13]:
name 李四
age 20
gender 女
Name: 1, dtype: object In [14]: df3.iloc[1]
Out[14]:
name 李四
age 20
gender 女
Name: 1, dtype: object

5、查看行列数:使用 shape 查看行列数,注意:参数为0 表示查看行数,参数为1 表示查看列数。

6、DataFrame 数据格式的行列选取

import numpy as np
import pandas as pd data = pd.DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w']    #选择表格中的'w'列,使用类字典属性,返回的是Series类型 data.w    #选择表格中的'w'列,使用点属性,返回的是Series类型 data[['w']] #选择表格中的'w'列,返回的是DataFrame属性 data[['w','z']] #选择表格中的'w'、'z'列 data[0:2] #返回第1行到第2行的所有行,前闭后开,包括前不包括后 data[1:2] #返回第2行,从0计,返回的是单行,通过有前后值的索引形式,
#如果采用data[1]则报错 data.ix[1:2] #(deprecated)返回第2行的第三种方法,返回的是DataFrame,跟data[1:2]同 data['a':'b'] #利用index值进行切片,返回的是**前闭后闭**的DataFrame,
#即末端是包含的
data.irow(0) #(deprecated)取data的第一行
data.icol(0) #(deprecated)取data的第一列 data.head() #返回data的前几行数据,默认为前五行,需要前十行则dta.head(10)
data.tail() #返回data的后几行数据,默认为后五行,需要后十行则data.tail(10) data.iloc[-1] #选取DataFrame最后一行,返回的是Series
data.iloc[-1:] #选取DataFrame最后一行,返回的是DataFrame data.loc['a',['w','x']] #返回‘a’行'w'、'x'列,这种用于选取行索引列索引已知 data.iat[1,1] #选取第二行第二列,用于已知行、列位置的选取

四、DataFrame 数据操作

1、转置:直接字母T,这就有点 线性代数 的味道了哈

2、描述性统计

  使用 describe 方法可以对数据根据“列”进行描述性统计:

In [15]: df3.describe()
Out[15]:
age
count 3.0
mean 20.0
std 2.0
min 18.0
25% 19.0
50% 20.0
75% 21.0
max 22.0

  由上可以看出,如果有的列是非数值型的,那么就跳过不会进行统计;如果想对行进行描述性统计,可以灵活处理一下:转置后进行 describe。

3、计算

  使用 sum 默认对每“列”求和,sum(1) 为对每“行”求和:

In [16]: df3.sum()        # 列求和
Out[16]:
name 张三李四王五 # 如果元素是字符串,使用sum也会加起来(字符串拼接)
age 60
gender 男女男
dtype: object In [17]: df3.sum(1) # 行求和
Out[17]:
0 18 # 行中,如果有字符串有数值,则只计算数值
1 20
2 22
dtype: int64

  数乘运算使用 apply(应用 lambda 实现):

In [18]: df2
Out[18]:
c1 c2 c3 c4
r1 1 2 3 4
r2 2 3 4 5
r3 3 4 5 6
r4 4 5 6 7 In [19]: df2.apply(lambda x:x*2)
Out[19]:
c1 c2 c3 c4
r1 2 4 6 8
r2 4 6 8 10
r3 6 8 10 12
r4 8 10 12 14

  如果元素是字符串,则会把字符串再重复一遍。

  乘方运算跟 matlab 类似,直接使用两个 *,乘方运算如果有元素是字符串的话,就会报错。

4、增删改

In [36]: df2
Out[36]:
c1 c2 c3 c4
r1 1 2 3 4
r2 2 3 4 5
r3 3 4 5 6
r4 4 5 6 7 # 1.增
In [37]: df2['c5'] = 8 # 创建新列并赋值(统一值) In [38]: df2
Out[38]:
c1 c2 c3 c4 c5
r1 1 2 3 4 8
r2 2 3 4 5 8
r3 3 4 5 6 8
r4 4 5 6 7 8 In [39]: df2.insert(0,'c0',[9, 9, 9, 9]) # 使用 insert 方法可以指定把列插入到第几列,其他的列顺延 In [40]: df2
Out[40]:
c0 c1 c2 c3 c4 c5
r1 9 1 2 3 4 8
r2 9 2 3 4 5 8
r3 9 3 4 5 6 8
r4 9 4 5 6 7 8 # 2.删
In [41]: del df2['c0'] In [42]: df2
Out[42]:
c1 c2 c3 c4 c5
r1 1 2 3 4 8
r2 2 3 4 5 8
r3 3 4 5 6 8
r4 4 5 6 7 8 In [43]: df2.drop('c1',axis=1) # 使用 drop() 方法删除
Out[43]:
c2 c3 c4 c5
r1 2 3 4 8
r2 3 4 5 8
r3 4 5 6 8
r4 5 6 7 8 In [44]: df2 # 用 drop 删除时,删的是视图,并没有真正删除
Out[44]:
c1 c2 c3 c4 c5
r1 1 2 3 4 8
r2 2 3 4 5 8
r3 3 4 5 6 8
r4 4 5 6 7 8 # dorp()可以通过axis(行:axis=0 ,列:axis=1)可以控制删除行或列,默认是行
# dorp()可以同时删除多行或多列,如 df2.drop(['c1','c2'], axis=1) # 3.改
In [45]: df2['c5']['r3'] = 99 In [46]: df2
Out[46]:
c1 c2 c3 c4 c5
r1 1 2 3 4 8
r2 2 3 4 5 8
r3 3 4 5 6 99
r4 4 5 6 7 8

5、合并拼接

  使用 join 可以将两个 DataFrame 合并,但只根据行列名合并,并且以作用的那个 DataFrame 的为基准。

  但是,join 这个方法还有 how 这个参数可以设置,合并两个 DataFrame 的交集或并集。参数为 'inner' 表示交集,'outer' 表示并集。

  如果要合并多个 Dataframe,可以用 list 把几个 Dataframe 装起来,然后使用 concat 转化为一个新的 Dataframe。

Pandas 库之 DataFrame的更多相关文章

  1. Pandas库之DataFrame

    Pandas库之DataFrame 1 简介 DataFrame是Python中Pandas库中的一种数据结构,它类似excel,是一种二维表. 或许说它可能有点像matlab的矩阵,但是matlab ...

  2. 【Python学习笔记】Pandas库之DataFrame

    1 简介 DataFrame是Python中Pandas库中的一种数据结构,它类似excel,是一种二维表. 或许说它可能有点像matlab的矩阵,但是matlab的矩阵只能放数值型值(当然matla ...

  3. python数据分析之pandas库的DataFrame应用二

    本节介绍Series和DataFrame中的数据的基本手段 重新索引 pandas对象的一个重要方法就是reindex,作用是创建一个适应新索引的新对象 ''' Created on 2016-8-1 ...

  4. [转]python中pandas库中DataFrame对行和列的操作使用方法

    转自:http://blog.csdn.net/u011089523/article/details/60341016 用pandas中的DataFrame时选取行或列: import numpy a ...

  5. python中pandas库中DataFrame对行和列的操作使用方法

    用pandas中的DataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis, DataFram ...

  6. python数据分析之pandas库的DataFrame应用一

    DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值,字符串,布尔型).DateFrame既有行索引也有列索引,可以被看作为由Series组成的字典. 构建Dat ...

  7. 数据分析与展示---Pandas库入门

    简介 一:Pandas库的介绍 二:Pandas库的Series类型 (一)索引 (1)自动索引 (2)自定义索引 (二)Series类型创建 (1)列表创建 (2)标量值创建 (3)字典类型创建(将 ...

  8. pandas库学习笔记(二)DataFrame入门学习

    Pandas基本介绍——DataFrame入门学习 前篇文章中,小生初步介绍pandas库中的Series结构的创建与运算,今天小生继续“死磕自己”为大家介绍pandas库的另一种最为常见的数据结构D ...

  9. Pandas库中的DataFrame

    1 简介 DataFrame是Python中Pandas库中的一种数据结构,它类似excel,是一种二维表. 或许说它可能有点像matlab的矩阵,但是matlab的矩阵只能放数值型值(当然matla ...

随机推荐

  1. lleetcode 1 two sum c++

    Problem describe:https://leetcode.com/problems/two-sum/ Given an array of integers, return indices o ...

  2. WPF 入门笔记之布局

    一.布局原则: 1. 不应显示的设定元素的尺寸,反而元素可以改变它的尺寸,并适应它们的内容 2. 不应使用平布的坐标,指定元素的位置. 3. 布局容器和它的子元素是共享可以使用的空间 4. 可以嵌套的 ...

  3. python笔记(2)--字符串

    一.字符串 字符串是不可变序列,具有序列的公共操作方法,具体操作见python笔记(1)--序列(列表 元组 range) 1.创建字符串 单引号:'Hello , I am Logan ! ' 双引 ...

  4. ElasticStack学习(九):深入ElasticSearch搜索之词项、全文本、结构化搜索及相关性算分

    一.基于词项与全文的搜索 1.词项 Term(词项)是表达语意的最小单位,搜索和利用统计语言模型进行自然语言处理都需要处理Term. Term的使用说明: 1)Term Level Query:Ter ...

  5. Netty使用Google Protocol Buffer完成服务器高性能数据传输

    一.什么是Google Protocol Buffer(protobuf官方网站) 下面是官网给的解释: Protocol buffers are a language-neutral, platfo ...

  6. 通过代数,数字,欧几里得平面和分形讨论JavaScript中的函数式编程

    本文是对函数式编程范式的系列文章从而拉开了与以下延续一个. 介绍 在JavaScript中,函数只是对象.因此,可以构造函数,作为参数传递,从函数返回或分配给变量.因此,JavaScript具有一流的 ...

  7. SpringBoot开发案例Nacos配置管理中心

    前言 在开发过程中,通常我们会配置一些参数来实现某些功能,比如是否开启某项服务,告警邮件配置等等.一般会通过硬编码.配置文件或者数据库的形式实现. 那么问题来了,如何更加优雅的实现?欢迎来到 Naco ...

  8. 一个测试文件与源文件位于不同模块时Jacoco覆盖率配置的例子

    问题描述: 我们有个多模块项目,由于种种原因(更常见的可能是需要集成测试)测试文件和源文件不在一个模块,Jacoco的覆盖率无法正确显示,查询了一些资料,发现中文的例子比较少,就把我自己的Demo贴一 ...

  9. hadoop的运行模式

    概述 1)资料查询(官方网址) (1)官方网站: http://hadoop.apache.org/ (2)各个版本归档库地址 https://archive.apache.org/dist/hado ...

  10. springboot集成activiti6.0多数据源的配置

    最近公司开始开发springboot的项目,需要对工作流进行集成.目前activiti已经发布了7.0的版本,但是考虑到6.0版本还是比较新而且稳定的,决定还是选择activiti6.0的版本进行集成 ...