1.代码结构

├── data // 图数据

├── inits // 初始化的一些公用函数

├── layers // GCN层的定义

├── metrics // 评测指标的计算

├── models // 模型结构定义

├── train // 训练

└── utils // 工具函数的定义

2.数据

Data: cora,Citeseer, or Pubmed,在data文件夹下:

Original data:

Cora的数据集

包括2708份科学出版物,分为7类。引文网络由5429个链接组成。数据集中的每个发布都由一个0/1值的单词向量来描述,该向量表示字典中相应单词的存在或不存在。这部词典由1433个独特的单词组成。数据集中的自述文件提供了更多的细节。

CiteSeer文献分类

CiteSeer数据集包括3312种科学出版物,分为6类。引文网络由4732条链接组成。数据集中的每个发布都由一个0/1值的单词向量来描述,该向量表示字典中相应单词的存在或不存在。该词典由3703个独特的单词组成。



数据集中的自述文件提供了更多的细节。

CiteSeer for Entity Resolution

为了实体解析,CiteSeer数据集包含1504个机器学习文档,其中2892个作者引用了165个作者实体。对于这个数据集,惟一可用的属性信息是作者名。完整的姓总是给出的,在某些情况下,作者的全名和中间名是给出的,其他时候只给出首字母。

PubMed糖尿病数据库

由来自PubMed数据库的19717篇与糖尿病相关的科学出版物组成,分为三类。引文网络由44338个链接组成。数据集中的每个出版物都由一个TF/IDF加权词向量来描述,这个词向量来自一个包含500个唯一单词的字典。数据集中的自述文件提供了更多的细节。

以下以cora数据集为例:



数据集预处理:

读取数据:



"""

def load_data(dataset_str):

------

Loads input data from gcn/data directory

ind.dataset_str.x => the feature vectors of the training instances as scipy.sparse.csr.csr_matrix object;
ind.dataset_str.tx => the feature vectors of the test instances as scipy.sparse.csr.csr_matrix object;
ind.dataset_str.allx => the feature vectors of both labeled and unlabeled training instances
(a superset of ind.dataset_str.x) as scipy.sparse.csr.csr_matrix object;
ind.dataset_str.y => the one-hot labels of the labeled training instances as numpy.ndarray object;
ind.dataset_str.ty => the one-hot labels of the test instances as numpy.ndarray object;
ind.dataset_str.ally => the labels for instances in ind.dataset_str.allx as numpy.ndarray object;
ind.dataset_str.graph => a dict in the format {index: [index_of_neighbor_nodes]} as collections.defaultdict
object;
ind.dataset_str.test.index => the indices of test instances in graph, for the inductive setting as list object. All objects above must be saved using python pickle module. :param dataset_str: Dataset name
:return: All data input files loaded (as well the training/test data).
------
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f)) x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file("data/ind.{}.test.index".format(dataset_str))
test_idx_range = np.sort(test_idx_reorder) if dataset_str == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range-min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range-min(test_idx_range), :] = ty
ty = ty_extended features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :] idx_test = test_idx_range.tolist()
idx_train = range(len(y))
idx_val = range(len(y), len(y)+500) train_mask = sample_mask(idx_train, labels.shape[0])
val_mask = sample_mask(idx_val, labels.shape[0])
test_mask = sample_mask(idx_test, labels.shape[0]) y_train = np.zeros(labels.shape)
y_val = np.zeros(labels.shape)
y_test = np.zeros(labels.shape)
y_train[train_mask, :] = labels[train_mask, :]
y_val[val_mask, :] = labels[val_mask, :]
y_test[test_mask, :] = labels[test_mask, :] return adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask
"""

知识点1:

那么为什么需要序列化和反序列化这一操作呢? 便于存储。序列化过程将文本信息转变为二进制数据流。这样就信息就容易存储在硬盘之中,当需要读取文件的时候,从硬盘中读取数据,然后再将其反序列化便可以得到原始的数据。在Python程序运行中得到了一些字符串、列表、字典等数据,想要长久的保存下来,方便以后使用,而不是简单的放入内存中关机断电就丢失数据。python模块大全中的Pickle模块就派上用场了,它可以将对象转换为一种可以传输或存储的格式。 loads()函数执行和load() 函数一样的反序列化。取代接受一个流对象并去文件读取序列化后的数据,它接受包含序列化后的数据的str对象, 直接返回的对象。

import cPickle as pickle 

pickle.dump(obj,f)  # 序列化方法pickle.dump()

pickle.dumps(obj,f)  #pickle.dump(obj, file, protocol=None,*,fix_imports=True) 该方法实现的是将序列化后的对象obj以二进制形式写入文件file中,进行保存。它的功能等同于 Pickler(file, protocol).dump(obj)。

pickle.load(f)  #反序列化操作: pickle.load(file, *,fix_imports=True, encoding=”ASCII”. errors=”strict”)

pickle.loads(f)

回顾以下:

cora数据集:包括2708份科学出版物,分为7类。引文网络由5429个链接组成。数据集中的每个发布都由一个0/1值的单词向量来描述,该向量表示字典中相应单词的存在或不存在。这部词典由1433个独特的单词组成。







邻接矩阵adj:27082708 对应2708份科学出版物,以及对应的连接



特征feature :2708
1433 ,这部词典由1433个独特的单词组成。

7对应7类

接下来做一些处理:

行规格化特征矩阵并转换为元组表示:

处理特征:将特征进行归一化并返回tuple (coords, values, shape)

模型的选择



GCN定义在model.py文件中,model.py 定义了一个model基类,以及两个继承自model类的MLP、GCN类。



重点来看看GCN类的定义:





看一下图卷积层的定义:在layer.py文件中,





接下来:



然后训练模型:

细节补充1:

参考:https://blog.csdn.net/weixin_36474809/article/details/89379727

细节补充2:

参考:https://www.baidu.com/link?url=0VitAaCEOfc60eW_bXCRmiuYV7SV5O7cuElOGJaoGk1D-QZHlckKtwv8YXoLYrfB7TONrsN-y46R6702byd7o9ecz1eW3-3SdNOBgnS44BG&wd=&eqid=9d04d9070008d75a000000065d9eae5a

GCN 实现3 :代码解析的更多相关文章

  1. GraphSAGE 代码解析(四) - models.py

    原创文章-转载请注明出处哦.其他部分内容参见以下链接- GraphSAGE 代码解析(一) - unsupervised_train.py GraphSAGE 代码解析(二) - layers.py ...

  2. GraphSAGE 代码解析(一) - unsupervised_train.py

    原创文章-转载请注明出处哦.其他部分内容参见以下链接- GraphSAGE 代码解析(二) - layers.py GraphSAGE 代码解析(三) - aggregators.py GraphSA ...

  3. VBA常用代码解析

    031 删除工作表中的空行 如果需要删除工作表中所有的空行,可以使用下面的代码. Sub DelBlankRow() DimrRow As Long DimLRow As Long Dimi As L ...

  4. [nRF51822] 12、基础实验代码解析大全 · 实验19 - PWM

    一.PWM概述: PWM(Pulse Width Modulation):脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形. PWM 的几个基本概念: 1) 占空比:占空比是指 ...

  5. [nRF51822] 11、基础实验代码解析大全 · 实验16 - 内部FLASH读写

     一.实验内容: 通过串口发送单个字符到NRF51822,NRF51822 接收到字符后将其写入到FLASH 的最后一页,之后将其读出并通过串口打印出数据. 二.nRF51822芯片内部flash知识 ...

  6. [nRF51822] 10、基础实验代码解析大全 · 实验15 - RTC

    一.实验内容: 配置NRF51822 的RTC0 的TICK 频率为8Hz,COMPARE0 匹配事件触发周期为3 秒,并使能了TICK 和COMPARE0 中断. TICK 中断中驱动指示灯D1 翻 ...

  7. [nRF51822] 9、基础实验代码解析大全 · 实验12 - ADC

    一.本实验ADC 配置 分辨率:10 位. 输入通道:5,即使用输入通道AIN5 检测电位器的电压. ADC 基准电压:1.2V. 二.NRF51822 ADC 管脚分布 NRF51822 的ADC ...

  8. java集合框架之java HashMap代码解析

     java集合框架之java HashMap代码解析 文章Java集合框架综述后,具体集合类的代码,首先以既熟悉又陌生的HashMap开始. 源自http://www.codeceo.com/arti ...

  9. Kakfa揭秘 Day8 DirectKafkaStream代码解析

    Kakfa揭秘 Day8 DirectKafkaStream代码解析 今天让我们进入SparkStreaming,看一下其中重要的Kafka模块DirectStream的具体实现. 构造Stream ...

  10. linux内存管理--slab及其代码解析

    Linux内核使用了源自于 Solaris 的一种方法,但是这种方法在嵌入式系统中已经使用了很长时间了,它是将内存作为对象按照大小进行分配,被称为slab高速缓存. 内存管理的目标是提供一种方法,为实 ...

随机推荐

  1. python3内置函数回忆

    1.数学运算类 # 1.数学运算类 # abs:计算绝对值 print(abs(-23)) # divmod,返回一个tuple,第一个值为商,第二个值为余数 print(divmod(10,4)) ...

  2. 阿里蒋晓伟谈计算引擎Flink和Spark的对比

    本文整理自云栖社区之前对阿里搜索事业部资深搜索专家蒋晓伟老师的一次采访,蒋晓伟老师,认真而严谨.在加入阿里之前,他曾就职于西雅图的脸书,负责过调度系统,Timeline Infra和Messenger ...

  3. 操作系统——输入输出(I/O)管理

    目录 一.I/O 管理概述 1.1 I/O 控制方式 1.2 I/O 软件层次结构 二.I/O 核心子系统 2.1 I/O 调度概念 2.2高速缓存与缓冲区 2.3设备分配与回收 2.4假脱机技术(S ...

  4. Java内存区域与内存溢出异常,对象的创建

    一.运行时数据区域 Java程序的执行流程:首先 .java源代码文件会被Java编译器编译为字节码文件(.class后缀),然后由JVM中的类加载器加载各个类的字节码文件,加载完毕之后,交由JVM执 ...

  5. 搭建Vue开发环境

    1.安装Node.js 安装包下载地址: https://nodejs.org/en/ 安装时可以选择是否自动安装必要的工具,如Chocolatey.Python2,这里我选择了自动安装 Node.j ...

  6. python部署mariadb主从架构

    主机部署: import configparser import os def config_mariadb_yum(): exists = os.path.exists('/etc/yum.repo ...

  7. InnoDB On-Disk Structures(四)--Doublewrite Buffer (转载)

    转载.节选于 https://dev.mysql.com/doc/refman/8.0/en/innodb-doublewrite-buffer.html The doublewrite buffer ...

  8. VSCode+C++环境搭建

    date: 2019-10-05 VSCode+C++环境搭建 其实并不完整,毕竟我也只是一个OIer,并不会很高深的东西.(众所周知,OIer主业是软件开发) 安装VSCode 下载安装包 这个很简 ...

  9. Appium从入门到实战合集

    从今天起,持续更新 想要及时获得更新,请关注微信公众号 教程下载 1.连载01-Appium自我介绍和环境搭建 2.连载02-Appium启动参数配置 3.连载03-Appium入门案例 4.连载04 ...

  10. 13. Go 语言网络爬虫

    Go 语言网络爬虫 本章将完整地展示一个应用程序的设计.编写和简单试用的全过程,从而把前面讲到的所有 Go 知识贯穿起来.在这个过程中,加深对这些知识的记忆和理解,以及再次说明怎样把它们用到实处.由本 ...