[Mathematics][MIT 18.03] Proof of a Theory about the Solution to Second-order Linear Homogeneous Differential Equation
At first, I'd like to say thank you to MIT open courses which give me the privilege to enjoy the most outstanding education resources.
Okay, come to the point. When I was learning the second-order homogeneous differential equation, the professor quoted a theory in one step to prove that ${c_{1}y_{1}+c_{2}y_{2}}$ are all the solutions.
THM: if $y_{1},y_{2}$ are solu's to ODE, then either $W(y_{1},y_{2}) = 0$ (i.e. for all x) or$W(y_{1},y_{2}) is nonzero$ (i.e. for all x).
note: W means Wronskian
Well, frankly speaking, I got the inspiration from that introduction in wiki too.
[Mathematics][MIT 18.03] Proof of a Theory about the Solution to Second-order Linear Homogeneous Differential Equation的更多相关文章
- [Mathematics][MIT 18.03] Detailed Explanation of the Frequency Problems in Second-Order Differential Equation of Oscillation System
Well, to begin with, I'd like to say thank you to MIT open courses twice. It's their generosity that ...
- [Mathematics][MIT 18.02]Detailed discussions about 2-D and 3-D integral and their connections
Since it is just a sort of discussion, I will just give the formula and condition without proving th ...
- PYTHON替代MATLAB在线性代数学习中的应用(使用Python辅助MIT 18.06 Linear Algebra学习)
前言 MATLAB一向是理工科学生的必备神器,但随着中美贸易冲突的一再升级,禁售与禁用的阴云也持续笼罩在高等学院的头顶.也许我们都应当考虑更多的途径,来辅助我们的学习和研究工作. 虽然PYTHON和众 ...
- Docker 18.03 Centos7.6 安装 内网
首先访问https://download.docker.com/linux/centos/7/x86_64/stable/Packages/获取对应版本的rpm包docker包docker-ce-18 ...
- 18/03/18 04:53:44 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
1:遇到这个问题是在启动bin/spark-shell以后,然后呢,执行spark实现wordcount的例子的时候出现错误了,如: scala> sc.textFile()).reduceBy ...
- windows的docker开始支持linux的镜像 ,Version 18.03.0-ce-win59 (16762)
LCOW containers can now be run next to Windows containers.Use '--platform=linux' in Windows containe ...
- [MIT 18.06 线性代数]Intordution to Vectors向量初体验
目录 1.1. Vectors and Linear Combinations向量和线性组合 REVIEW OF THE KEY IDEAS 1.2 Lengths and Dot Products向 ...
- Docker 18.03导入导出
docker中分容器和镜像,简单可以理解为容器是运行中的实例,镜像是运行实例所需的静态文件. 导入导出既可以对容器做操作,也可以对镜像做操作.区别在于镜像可以随时导出,容器必须要停止之后才可以导出,否 ...
- 布客·ApacheCN 翻译/校对/笔记整理活动进度公告 2020.1
注意 请贡献者查看参与方式,然后直接在 ISSUE 中认领. 翻译/校对三个文档就可以申请当负责人,我们会把你拉进合伙人群.翻译/校对五个文档的贡献者,可以申请实习证明. 请私聊片刻(52981514 ...
随机推荐
- SpringCloud(二)- 服务注册与发现Eureka
离上一篇微服务的基本概念已经过去了几个月,在写那篇博客之前,自己还并未真正的使用微服务架构,很多理解还存在概念上.后面换了公司,新公司既用了SpringCloud也用了Dubbo+Zookeeper, ...
- jasypt
jasypt-1.9.0.jar import org.jasypt.encryption.pbe.StandardPBEStringEncryptor; public class EncryptUt ...
- git@github.com: Permission denied (publickey)
1. 检查SSH key是否已经存在,如存在走第3步 : ls ~/.ssh/ 2. 如果第1步中的SSH key不存在,生成一个新的SSH key: ssh-keygen - ...
- CodeForces 375D Tree and Queries 莫队||DFS序
Tree and Queries 题意:有一颗以1号节点为根的树,每一个节点有一个自己的颜色,求出节点v的子数上颜色出现次数>=k的颜色种类. 题解:使用莫队处理这个问题,将树转变成DFS序区间 ...
- codeforces 798 D. Mike and distribution(贪心+思维)
题目链接:http://codeforces.com/contest/798/problem/D 题意:给出两串长度为n的数组a,b,然后要求长度小于等于n/2+1的p数组是的以p为下表a1-ap的和 ...
- 明明有class为什么还是报ClassNotFoundException?
描述 我们修改接口时,习惯发布一个快照版本用于测试.我们的一个服务也是发布了快照版本,然后一个jar程序要依赖这个服务,修改pom文件打包部署后,通过 java -jar 命令执行这个jar程序,然后 ...
- Java连载30-方法重载、方法递归
一.方法重载 1.又被称为overload 2.方法重载使用场景 功能类似的时候,尽可能仍方法名相同(但是功能不同或者不相似的时候,方法名尽量不同) 3.什么条件满足之后,可以构成方法重载 (1)在同 ...
- CountDownLatch、CyclicBarrier和Semaphore使用
CountDownLatch CountDownLatch是用来线程计数的.等待一组线程全部执行完后再本线程继续执行.如:A线程需要等待B.C和D(由初始化CountDownLatch参数觉得等待多少 ...
- 记一次oracle新建用户及分配指定表权限的操作记录
1.登录 2.创建用户create user new用户名 identified by new用户名创建new用户名用户,密码设置为new用户名. 3.授权new用户名用户的连接.资源权限.grant ...
- 解决android splash 启动白屏问题
有时我们会发现 ,在splash 页面启动之前会有那么零点几秒的白屏, 真的很让人抓狂 解决办法其实也很简单 . 1.在style.xml中定义一个样式, 这里引入 splash页面的 图片, 注意不 ...