版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。

初步总结的SSD和yolo-v3之间的一些区别。

其中的一些概念还有待充分解释。

SSD YOLOv3
Loss Softmax loss Logistic loss
Feature extractor VGG19 Darknet-53
Bounding Box Prediction direct offset with default box offset with gird cell by sigmoid activation
Anchor box Different scale and aspect ratio K-means from coco and VOC
Small objects Semantic value for bottom layer is not high. Worse for small objects. Higher resolution layers have higher semantic values. Better for small objects.
Big objects Better. Feature map rangers from 38 * 38 to 3 * 3 ,1 * 1. Worse. 13 * 13 feature map is the most coarse-grained.
Data Augmentation different sample IOU crop on original image randomly put the scaled original image (from 0.25 to 2) on the gray canvas
Input resize original image to fixed size Random multi-scale input
FPN no with FPN

SSD的loss中,不同类别的分类器是softmax,最终检测目标的类别只能是一类。而在yolo-v3中,例如对于80类的coco数据集,对于类别进行判断是80个logistic分类器,只要输出大于设置的阈值,则都是物体的类别,物体同时可以属于多类,例如一个物体同时是person和woman。

Backbone network。ssd原版的基础网络就是VGG19,也可以用mobile-net、resnet等。yolo-v3的基础网络是作者自己设计的darknet-53(因为具有53个卷积层),借鉴了resnet的shortcut层,根据作者的话,以更少的参数、更少的计算量实现了接近的效果。

Anchor box。ssd从faster-rcnn中吸收了这一思想,采用的是均匀地将不同尺寸的default box分配到不同尺度的feature map上。例如6个feature map的尺度,default box的大小从20%到90%的占比,同时有aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2], [2]] ,最终可以计算出不同default box大小。而yolo-v3延续了yolo-v2的方法:从coco数据集中对bouding box 的(width, height)进行聚类,作者聚出9类,每类中心点取出作为一个box_size, 将每三个box_size划分给一个feature map。例如总共有(10,13), (16,30), (33,23), (30,61), (62,45), (59,119), (116,90), (156,198), (373,326)共9组w,h, 作者将后三个(116,90), (156,198), (373,326)作为13 * 13 的gird cell上的anchor box size。

图片输入。yolo-v3将输入图片映射到第一层feature map的固定比例是32。对于输入为416 * 416的图片,第一层feature map 大小为13 * 13。但是yolo-v3支持从300到600的所有32的倍数的输入。例如输入图片为320 * 320,这样第一层feature map就为10 * 10,在这样的gird cell中同样可以进行predict和match groudtruth。

Bounding Box 的预测方法。在不同的gird cell上,SSD预测出每个box相对于default box的位置偏移和宽高值。yolo-v3的作者觉得这样刚开始训练的时候,预测会很不稳定。因为位置偏移值在float的范围内都有可能,出现一个很大的值的话,位置都超出图片范围了,都是完全无效的预测了。所以yolov3的作者对于这位置偏移值都再做一个sigmoid激活,将范围缩为0-1 。b_x和b_y的值在(cell_x_loc, cell_x_loc+1), (cell_y_loc, cell_y_loc+1)之间波动。


  1. yolov3为什么比ssd好.
    不仅仅因为YOLO V3引入FPN结构,同时它的检测层由三级feature layers融合,而SSD的六个特征金字塔层全部来自于FCN的最后一层,其实也就是一级特征再做细化,明显一级feature map的特征容量肯定要弱于三级,尤其是浅层包含的大量小物体特征。

https://www.zhihu.com/question/269909535/answer/471978963

yolov3和ssd的区别的更多相关文章

  1. emmc和ssd的区别【转】

    本文转载自:https://blog.csdn.net/hawk_lexiang/article/details/78228789 emmc和ssd eMMC和SSD主要是满足不同需求而发展出来的NA ...

  2. one-stage object detectors(1)

    2019/04/08 强烈推荐:深入理解one-stage目标检测算法 yolo系列 one-stage object detectors(YOLO and SSD) 在不专一的模型中,每个检测器应该 ...

  3. 深度学习笔记(十三)YOLO V3 (Tensorflow)

    [代码剖析]   推荐阅读! SSD 学习笔记 之前看了一遍 YOLO V3 的论文,写的挺有意思的,尴尬的是,我这鱼的记忆,看完就忘了  于是只能借助于代码,再看一遍细节了. 源码目录总览 tens ...

  4. The Accidental DBA

    The Accidental DBA (Day 1 of 30): Hardware Selection: CPU and Memory Considerations 本文大意:      全篇主要讲 ...

  5. (转)Awesome Object Detection

    Awesome Object Detection 2018-08-10 09:30:40 This blog is copied from: https://github.com/amusi/awes ...

  6. TextBoxes 与 TextBoxes ++

    TextBoxes 论文关键idea 本文和SegLink一样,也是在SSD的基础上进行改进的.相比SSD做了以下的改进: 修改了default box的apect ratio,分别为[1 2 3 5 ...

  7. mysql特性及部署规范

    --分支版本,mysql对cpu,内存,io子系统资源利用特点--oracle mysql,mariadb,percona server--部署规范建议,系统安装,mysql安装,其他规范互联网业务为 ...

  8. paper-list

    1.yolo-v1,yolo-v2,yolo-v3 2.ssd,focal loss,dssd 3.fast-rcnn,faster-rcnn,r-fcn,Light-Head R-CNN,R-FCN ...

  9. 目标检测论文解读10——DSSD

    背景 SSD算法在检测小目标时精度并不高,本文是在在SSD的基础上做出一些改进,引入卷积层,能综合上下文信息,提高模型性能. 理解 Q1:DSSD和SSD的区别有哪些? (1)SSD是一层一层下采样, ...

随机推荐

  1. 围观高手是如何写好 Python 循环,把内存用到极致的?

    0 前言 说到处理循环,我们习惯使用for, while等,比如依次打印每个列表中的字符: lis = ['I', 'love', 'python'] for i in lis:     print( ...

  2. Ubuntu安装Node和npm

    本文简单介绍在Ubuntu上安装最新版本的node和npm. 本次试验环境是Ubuntu 18.10. 安装nodejs root@ubuntu:~# cat /etc/issue Ubuntu 18 ...

  3. Vue 从入门到进阶之路(十二)

    之前的文章我们介绍了一下 vue 中插槽的使用,本章我们接着介绍一下 vue 中的作用域插槽. <!DOCTYPE html> <html lang="en"&g ...

  4. RocketMQ 升级到主从切换(DLedger、多副本)实战

    目录 1.RocketMQ DLedger 多副本即主从切换核心配置参数详解 2.搭建主从同步环境 3.主从同步集群升级到DLedger 3.1 部署架构 3.2 升级步骤 3.3 验证消息发送与消息 ...

  5. 基于STM32F429,Cubemx的SDHC卡的基本Fatfs文件移植

    本博文要求各位初步了解Fatfs文件系统 友情提示Fatfs官网:http://elm-chan.org/fsw/ff/00index_e.html 1.开发软件 keil5,Cube5.21 2.实 ...

  6. Centos7 下 PHP 添加缺少的组件 sockets 和 openssl

    环境是 centos7 + nginx 1.14 + php 7.2.18,由于新增邮件发送功能,使用的是 socket 通讯的方式,需要开启 php 的 sockes 和 openssl 扩展 安装 ...

  7. javaWeb核心技术第三篇之JavaScript第一篇

    - 概述 - JavaScript一种直译式脚本语言,是一种动态类型.弱类型.基于原型的语言 - 作用:给页面添加动态效果,校验用户信息等. - 入门案例 - js和html的整合 - 方式1:内联式 ...

  8. JS基础语法---创建对象---三种方式创建对象:调用系统的构造函数;自定义构造函数;字面量的方式

    创建对象三种方式: 调用系统的构造函数创建对象 自定义构造函数创建对象(结合第一种和需求通过工厂模式创建对象) 字面量的方式创建对象 第一种:调用系统的构造函数创建对象 //小苏举例子: //实例化对 ...

  9. Vue组件化开发

    Vue的组件化 组件化是Vue的精髓,Vue就是由一个一个的组件构成的.Vue的组件化设计到的内容又非常多,当在面试时,被问到:谈一下你对Vue组件化的理解.这时候又有可能无从下手,因此在这里阐释一下 ...

  10. Java 类集初探

    类集 类集:主要功能就是Java数据结构的实现(java.util) 类集就是动态对象数组(链表也是动态数组) Collection 接口* Collection是整个类集之中单值保存的最大 父接口 ...