版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。

初步总结的SSD和yolo-v3之间的一些区别。

其中的一些概念还有待充分解释。

SSD YOLOv3
Loss Softmax loss Logistic loss
Feature extractor VGG19 Darknet-53
Bounding Box Prediction direct offset with default box offset with gird cell by sigmoid activation
Anchor box Different scale and aspect ratio K-means from coco and VOC
Small objects Semantic value for bottom layer is not high. Worse for small objects. Higher resolution layers have higher semantic values. Better for small objects.
Big objects Better. Feature map rangers from 38 * 38 to 3 * 3 ,1 * 1. Worse. 13 * 13 feature map is the most coarse-grained.
Data Augmentation different sample IOU crop on original image randomly put the scaled original image (from 0.25 to 2) on the gray canvas
Input resize original image to fixed size Random multi-scale input
FPN no with FPN

SSD的loss中,不同类别的分类器是softmax,最终检测目标的类别只能是一类。而在yolo-v3中,例如对于80类的coco数据集,对于类别进行判断是80个logistic分类器,只要输出大于设置的阈值,则都是物体的类别,物体同时可以属于多类,例如一个物体同时是person和woman。

Backbone network。ssd原版的基础网络就是VGG19,也可以用mobile-net、resnet等。yolo-v3的基础网络是作者自己设计的darknet-53(因为具有53个卷积层),借鉴了resnet的shortcut层,根据作者的话,以更少的参数、更少的计算量实现了接近的效果。

Anchor box。ssd从faster-rcnn中吸收了这一思想,采用的是均匀地将不同尺寸的default box分配到不同尺度的feature map上。例如6个feature map的尺度,default box的大小从20%到90%的占比,同时有aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2], [2]] ,最终可以计算出不同default box大小。而yolo-v3延续了yolo-v2的方法:从coco数据集中对bouding box 的(width, height)进行聚类,作者聚出9类,每类中心点取出作为一个box_size, 将每三个box_size划分给一个feature map。例如总共有(10,13), (16,30), (33,23), (30,61), (62,45), (59,119), (116,90), (156,198), (373,326)共9组w,h, 作者将后三个(116,90), (156,198), (373,326)作为13 * 13 的gird cell上的anchor box size。

图片输入。yolo-v3将输入图片映射到第一层feature map的固定比例是32。对于输入为416 * 416的图片,第一层feature map 大小为13 * 13。但是yolo-v3支持从300到600的所有32的倍数的输入。例如输入图片为320 * 320,这样第一层feature map就为10 * 10,在这样的gird cell中同样可以进行predict和match groudtruth。

Bounding Box 的预测方法。在不同的gird cell上,SSD预测出每个box相对于default box的位置偏移和宽高值。yolo-v3的作者觉得这样刚开始训练的时候,预测会很不稳定。因为位置偏移值在float的范围内都有可能,出现一个很大的值的话,位置都超出图片范围了,都是完全无效的预测了。所以yolov3的作者对于这位置偏移值都再做一个sigmoid激活,将范围缩为0-1 。b_x和b_y的值在(cell_x_loc, cell_x_loc+1), (cell_y_loc, cell_y_loc+1)之间波动。


  1. yolov3为什么比ssd好.
    不仅仅因为YOLO V3引入FPN结构,同时它的检测层由三级feature layers融合,而SSD的六个特征金字塔层全部来自于FCN的最后一层,其实也就是一级特征再做细化,明显一级feature map的特征容量肯定要弱于三级,尤其是浅层包含的大量小物体特征。

https://www.zhihu.com/question/269909535/answer/471978963

yolov3和ssd的区别的更多相关文章

  1. emmc和ssd的区别【转】

    本文转载自:https://blog.csdn.net/hawk_lexiang/article/details/78228789 emmc和ssd eMMC和SSD主要是满足不同需求而发展出来的NA ...

  2. one-stage object detectors(1)

    2019/04/08 强烈推荐:深入理解one-stage目标检测算法 yolo系列 one-stage object detectors(YOLO and SSD) 在不专一的模型中,每个检测器应该 ...

  3. 深度学习笔记(十三)YOLO V3 (Tensorflow)

    [代码剖析]   推荐阅读! SSD 学习笔记 之前看了一遍 YOLO V3 的论文,写的挺有意思的,尴尬的是,我这鱼的记忆,看完就忘了  于是只能借助于代码,再看一遍细节了. 源码目录总览 tens ...

  4. The Accidental DBA

    The Accidental DBA (Day 1 of 30): Hardware Selection: CPU and Memory Considerations 本文大意:      全篇主要讲 ...

  5. (转)Awesome Object Detection

    Awesome Object Detection 2018-08-10 09:30:40 This blog is copied from: https://github.com/amusi/awes ...

  6. TextBoxes 与 TextBoxes ++

    TextBoxes 论文关键idea 本文和SegLink一样,也是在SSD的基础上进行改进的.相比SSD做了以下的改进: 修改了default box的apect ratio,分别为[1 2 3 5 ...

  7. mysql特性及部署规范

    --分支版本,mysql对cpu,内存,io子系统资源利用特点--oracle mysql,mariadb,percona server--部署规范建议,系统安装,mysql安装,其他规范互联网业务为 ...

  8. paper-list

    1.yolo-v1,yolo-v2,yolo-v3 2.ssd,focal loss,dssd 3.fast-rcnn,faster-rcnn,r-fcn,Light-Head R-CNN,R-FCN ...

  9. 目标检测论文解读10——DSSD

    背景 SSD算法在检测小目标时精度并不高,本文是在在SSD的基础上做出一些改进,引入卷积层,能综合上下文信息,提高模型性能. 理解 Q1:DSSD和SSD的区别有哪些? (1)SSD是一层一层下采样, ...

随机推荐

  1. GUI程序分析实例

    GUI程序开发概述 GUI程序开发原理 GetMessage(&msg)将消息队列中的消息取出来,在循环中进行处理. GUI程序开发的本质

  2. 《移动WEB前端高级开发实践@www.java1234.com.pdf》——2

    5.3 作用域.闭包和this let 声明的变量只存在于其所在的代码块中 由于 JS 是基于词法(静态)作用域的语言,词法作用域的含义是在函数定义时就确定了作用域,而不是函数执行时再确定 calcu ...

  3. 痞子衡嵌入式:飞思卡尔i.MX RTyyyy系列MCU特性那些事(2)- RT1052DVL6性能实测(CoreMark)

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是飞思卡尔i.MX RTyyyy系列MCU的性能. 在前面的文章 i.MXRTyyyy微控制器概览 里,痞子衡给大家简介过恩智浦半导体在2 ...

  4. GO-切片拷贝以及赋值

    一.拷贝 package main import "fmt" func main(){ //copy函数,把一个切片copy到另一个切片之上 var a [1000]int=[10 ...

  5. C# 利用itextsharp、Spire配合使用为pdf文档每页添加水印

    下载类库: 直接下载 引入类库 功能实现 using iTextSharp.text.pdf; using Spire.Pdf; using Spire.Pdf.Graphics; using Sys ...

  6. jquery实现get的异步请求

    <%@ page contentType="text/html;charset=UTF-8" language="java" %><html& ...

  7. Cesium区分单击【LEFT_CLICK】和双击事件【LEFT_DOUBLE_CLICK】

    问题描述 在cesium中,用户鼠标左键双击视图或Entity时,实际触发的是两次click和一次dbclick事件,非常影响代码设计,本文记录了如何区分单击[LEFT_CLICK]和双击事件[LEF ...

  8. m3u8视频格式分析

    “ 学习m3u8格式.” 一段时间之前,乘着某美女CEO的东风,学习了一个新的数据格式,即m3u8格式. 经过一段时间的沉淀,美女CEO的热潮大概已经褪去,今天才对这个格式进行分析,嘻嘻. 先介绍下来 ...

  9. SAP SD如何将销售订单其它ITEM加入到一个已创建好的交货单里

    SAP SD如何将销售订单其它ITEM加入到一个已创建好的交货单里 如下的销售订单,有多个ITEM, 为其中的第一个ITEM创建了DN 80016362, 如果业务发现需要修改该交货单,将销售订单里的 ...

  10. 【React Native】在原生和React Native间通信(RN调用原生)

    一.从React Native中调用原生方法(原生模块) 原生模块是JS中也可以使用的Objective-C类.一般来说这样的每一个模块的实例都是在每一次通过JS bridge通信时创建的.他们可以导 ...