Input: standard input
Output: standard output

Time Limit: 2 seconds

The small sawmill in Mission, British Columbia, has developed a brand new way of packaging boards for drying. By fixating the boards in special moulds, the board can dry efficiently in a drying room.

Space is an issue though. The boards cannot be too close, because then the drying will be too slow. On the other hand, one wants to use the drying room efficiently.

Looking at it from a 2-D perspective, your task is to calculate the fraction between the space occupied by the boards to the total space occupied by the mould. Now, the mould is surrounded by an aluminium frame of negligible thickness, following the hull of the boards' corners tightly. The space occupied by the mould would thus be the interior of the frame.

Input

On the first line of input there is one integer, N <= 50, giving the number of test cases (moulds) in the input. After this line, N test cases follow. Each test case starts with a line containing one integer n, 1< n <= 600, which is the number of boards in the mould. Then n lines follow, each with five floating point numbers x, y, w, h, j where 0 <= x, y, w, h <=10000 and –90° < j <=90°. The x and y are the coordinates of the center of the board and w and h are the width and height of the board, respectively. j is the angle between the height axis of the board to the y-axis in degrees, positive clockwise. That is, if j = 0, the projection of the board on the x-axis would be w. Of course, the boards cannot intersect.

Output

For every test case, output one line containing the fraction of the space occupied by the boards to the total space in percent. Your output should have one decimal digit and be followed by a space and a percent sign (%).

Sample Input                              Output for Sample Input

1

4

4 7.5 6 3 0

8 11.5 6 3 0

9.5 6 6 3 90

4.5 3 4.4721 2.2361 26.565

64.3 %


Swedish National Contest

The Sample Input and Sample Output corresponds to the given picture

题解:白书上的原题。

把每个矩形的四个顶点都找出来,做凸包就是最小的多边形,计算面积就从一个点出发向每个点都连一条对角线,将多边形分成若干个三角形再计算。

比较坑的是,数字和“%”之间还有一个空格>_<!


#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<map>
#include<ctime>
#include<string>
using namespace std;
typedef long long LL;
const int INF=0x3f3f3f3f;
const LL inf=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-10; struct Point{
double x,y;
Point(double xx=0,double yy=0) : x(xx),y(yy) {}
} p[2010],ch[2010];
typedef Point Vector;//定义向量 Vector operator + (Vector a,Vector b) { return Vector(a.x+b.x,a.y+b.y); }
Vector operator - (Vector a,Vector b) { return Vector(a.x-b.x,a.y-b.y); }
Vector operator * (Vector a,Vector b) { return Vector(a.x*b.x,a.y*b.y); }
Vector operator / (Vector a,Vector b) { return Vector(a.x/b.x,a.y/b.y); }
bool operator < (const Point &a,const Point &b) { return a.x==b.x? a.y<b.y:a.x<b.x; } int dcmp(double x)//精度判断
{
if(fabs(x)<eps) return 0;
return x<0 ? -1 : 1;
} double Dot(Vector a,Vector b) { return a.x*b.x+a.y*b.y; } //点积,向量积
double Cross(Vector a,Vector b) { return a.x*b.y-a.y*b.x; }//叉积
double Length(Vector a) { return sqrt(Dot(a,a)); }//向量长度
double Angle(Vector a,Vector b) { return acos(Dot(a,b)/Length(a)/Length(b)); }//向量的夹角
Vector Rotate(Vector a,double rad) { return Vector(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad)); }//逆时针旋转rad
Vector Normal(Vector a){ return Vector(-a.y/Length(a),a.x/Length(a)); }//单位法向量
double torad(double deg) { return deg/180*acos(-1); }//角度转化为弧度 Point GetLineIntersection(Point p,Vector v,Point q,Vector w)//两直线交点
{
Vector u=p-q;
double t=Cross(w,u)/Cross(v,w);
return p+v*t;
} double DistanceToLine(Point p,Point a,Vector b)//点到直线距离
{
Vector v1=b-a,v2=p-a;
return fabs(Cross(v1,v2))/Length(v1);
}
/*
double DistanceToSegment(Point p,Point a,Point b)//点到线段距离
{
if(a==b) return Length(p-a);
Vector v1=b-a,v2=p-a,v3=p-b;
if(dcmp(Dot(v1,v2))<0) return Length(v2);
else if(dcmp(Dot(v1,v3))>0) return Length(v3);
else return fabs(Cross(v1,v2))/Length(v1);
}
*/
Point GetLineProjection(Point p,Point a,Point b)//点在直线的投影点
{
Vector v=b-a;
return a+v*(Dot(v,p-a)/Dot(v,v));
} double Polygonarea(Point *p,int n)//多边形面积(凸,凹)
{
double area=0;
for(int i=1;i<n-1;i++) area+=Cross(p[i]-p[0],p[i+1]-p[0]);
return area/2;
} int Convexhull(Point *p,int n,Point *ch)//凸包
{
sort(p,p+n);
int m=0;
for(int i=0;i<n;i++)
{
while(m>1 && Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--;
ch[m++]=p[i];
}
int k=m;
for(int i=n-2;i>=0;i--)
{
while(m>k && Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--;
ch[m++]=p[i];
}
if(n>1) m--;
return m;
} int N,n;
double x,y,w,h,j; int main()
{
scanf("%d",&N);
while(N--)
{
int flag=0;
double area1=0,area2=0;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%lf%lf%lf%lf%lf",&x,&y,&w,&h,&j);
Point O{x,y};
double rad=-torad(j);
p[flag++]=O + Rotate(Vector(-w/2,-h/2),rad);
p[flag++]=O + Rotate(Vector(w/2,-h/2),rad);
p[flag++]=O + Rotate(Vector(-w/2,h/2),rad);
p[flag++]=O + Rotate(Vector(w/2,h/2),rad);
area1+=w*h;
}
int cnt=Convexhull(p,flag,ch);
area2=Polygonarea(ch,cnt);
printf("%.1lf %%\n",area1*100/area2);
}
return 0;
}

  


UVa-10652 包装木板的更多相关文章

  1. UVA 10652 Board Wrapping(二维凸包)

    传送门 刘汝佳<算法竞赛入门经典>P272例题6包装木板 题意:有n块矩形木板,你的任务是用一个面积尽量小的凸多边形把它们抱起来,并计算出木板占整个包装面积的百分比. 输入:t组数据,每组 ...

  2. uva 10652

    大意:有n块矩形木板,你的任务是用一个面积尽量小的凸多边形把它们包起来,并计算出木板站整个包装面积的百分比. 思路:按照题意将所有矩形顶点坐标存起来,旋转时先旋转从中心出发的向量,求得各个坐标之后,求 ...

  3. uva 10652 Board Wrapping (计算几何-凸包)

    Problem B Board Wrapping Input: standard input Output: standard output Time Limit: 2 seconds The sma ...

  4. UVa 10652 (简单凸包) Board Wrapping

    题意: 有n块互不重叠的矩形木板,用尽量小的凸多边形将它们包起来,并输出并输出木板总面积占凸多边形面积的百分比. 分析: 几乎是凸包和多边形面积的裸题. 注意:最后输出的百分号前面有个空格,第一次交P ...

  5. 简单几何(向量旋转+凸包+多边形面积) UVA 10652 Board Wrapping

    题目传送门 题意:告诉若干个矩形的信息,问他们在凸多边形中所占的面积比例 分析:训练指南P272,矩形面积长*宽,只要计算出所有的点,用凸包后再求多边形面积.已知矩形的中心,向量在原点参考点再旋转,角 ...

  6. uva 10652 Board Wrapping

    主要是凸包的应用: #include <cstdio> #include <cmath> #include <cstring> #include <algor ...

  7. UVA 10652 Board Wrapping(凸包)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=32286 [思路] 凸包 根据角度与中心点求出长方形所有点来,然后就 ...

  8. Uva 10652 Board Wrapping(计算几何之凸包+点旋转)

    题目大意:给出平面上许多矩形的中心点和倾斜角度,计算这些矩形面积占这个矩形点形成的最大凸包的面积比. 算法:GRAHAM,ANDREW. 题目非常的简单,就是裸的凸包 + 点旋转.这题自己不会的地方就 ...

  9. UVA 10652 Board Wrapping(凸包)

    The small sawmill in Mission, British Columbia, hasdeveloped a brand new way of packaging boards for ...

  10. ●UVA 10652 Board Wrapping

    题链: https://vjudge.net/problem/UVA-10652 题解: 计算几何,Andrew求凸包, 裸题...(数组开小了,还整了半天...) 代码: #include<c ...

随机推荐

  1. 虚拟机添加硬盘RAID5并分区、格式化、挂载使用

    当全新安装了一块新的硬盘设备后,为了更充分.安全的利用硬盘空间首先要进行磁盘的分区,然后格式化,最后挂载使用. 1.开启虚拟机之前,先添加硬盘设备,在这里我添加了5块硬盘(5块磁盘,3块做RAID5, ...

  2. mysql字符集那些事

    1..查看mysql当前使用的字符集. 登录mysql 在mysql 里输入 show variables like 'character_set%' mysql> show variables ...

  3. 2019年PHP最新面试题(含答案)

    1. 数据库设计经验,为什么进行分表?分库?一般多少数据量开始分表?分库?分库分表的目的?什么是数据库垂直拆分?水平拆分?分区等等 一:为什么要分表 当一张表的数据达到几百万时,你查询一次所花的时间会 ...

  4. rabittmq详解

    交换机(exchange): 声明交换机: Name Durability (消息代理重启后,交换机是否还存在) Auto-delete (当所有与之绑定的消息队列都完成了对此交换机的使用后,删掉它) ...

  5. 逻辑卷LVM

    1.理解LVM http://www.cnblogs.com/gaojun/archive/2012/08/22/2650229.html 2.创建LVM 根据“理解LVM”提供的原理思路搞 a)建立 ...

  6. SpringBoot系列之切换log4j日志框架

    SpringBoot系列之使用切换log4j日志框架 ok,在pom文件右键->Diagrams->show Dependencies....,如图,找到spring-boot-start ...

  7. 读取JDK API文档,并根据单词出现频率排序

    1,拿到 API 文档 登录 https://docs.oracle.com/javase/8/docs/api/ , 选中特定的类,然后 copy 其中的内容, 放入 TXT 文件中 , 2,读取T ...

  8. HashSet源码学习,基于HashMap实现

    HashSet源码学习 一).Set集合的主要使用类 1). HashSet 基于对HashMap的封装 2). LinkedHashSet 基于对LinkedHashSet的封装 3). TreeS ...

  9. 勾股数专题-SCAU-1079 三角形-18203 神奇的勾股数(原创)

    勾股数专题-SCAU-1079 三角形-18203 神奇的勾股数(原创) 大部分的勾股数的题目很多人都是用for来便利,然后判断是不是平方数什么什么的,这样做的时候要对变量类型和很多细节都是要掌握好的 ...

  10. Flex调用本地文件分析

    最近在用Flex做一个相册的功能,因为图片数据很多,所以想调用本地文件的方式做. 但是B/S的缘故,很多安全上的限制给我造成了不小的麻烦,把我这个小菜鸟弄的晕头转向. 第一,刚开始,查了很多资料发现都 ...