在这一部分中,仍然使用mtcars(Motor Trend Car Road Tests)这一数据集,以及mpg(one mile per gallon), hp(horsepower), wt(weight)这几个变量。

例01:

> vars<-c("mpg","hp","wt")
> head(mtcars[vars])
mpg hp wt
Mazda RX4 21.0 110 2.620
Mazda RX4 Wag 21.0 110 2.875
Datsun 710 22.8 93 2.320
Hornet 4 Drive 21.4 110 3.215
Hornet Sportabout 18.7 175 3.440
Valiant 18.1 105 3.460

1. 一些描述方法(a menagerie of methods)

例02:

> vars<-c("mpg","hp","wt")
> summary(mtcars[vars])
mpg hp wt
Min. :10.40 Min. : 52.0 Min. :1.513
1st Qu.:15.43 1st Qu.: 96.5 1st Qu.:2.581
Median :19.20 Median :123.0 Median :3.325
Mean :20.09 Mean :146.7 Mean :3.217
3rd Qu.:22.80 3rd Qu.:180.0 3rd Qu.:3.610
Max. :33.90 Max. :335.0 Max. :5.424

summary()函数:为数值变量提供最小值,最大值,均值,四分之一/四分之三值(quartiles);

为因子(factor)和逻辑变量(logical vector)提供频率值(frequency)

例03:

> mystats<-function(x,na.omit=FALSE){
+ if(na.omit)
+ x<-x[!is.na(x)]
+ m<-mean(x)
+ n<-length(x)
+ s<-sd(x)
+ skew<-sum((x-m)^3/s^3)/n
+ kurt<-sum((x-m)^4/s^4)/n-3
+ return(c(n=n,mean=m,stdev=s,skew=skew,kurtosis=kurt))
+ }
>
> sapply(mtcars[vars],mystats)
mpg hp wt
n 32.000000 32.0000000 32.00000000
mean 20.090625 146.6875000 3.21725000
stdev 6.026948 68.5628685 0.97845744
skew 0.610655 0.7260237 0.42314646
kurtosis -0.372766 -0.1355511 -0.02271075

sapply(x,FUN,options)

· x:是数据帧(data frame)或矩阵(matrix);

· FUN:是任意函数(arbitrary function),

典型的FUN函数包含mean,sd,var,min,max,median,length,range,quantile这些函数,skew,kurtosis则是需要自定义添加的。

注意:若想忽略掉缺省值(missing values),则应该使用sapply(mtcars[vars],mystats,na.omit=TRUE)

例03(1):

> mystats<-function(x,na.omit=TRUE){
+ if(na.omit)
+ x<-x[!is.na(x)]
+ m<-mean(x)
+ n<-length(x)
+ s<-sd(x)
+ skew<-sum((x-m)^3/s^3)/n
+ kurt<-sum((x-m)^4/s^4)/n-3
+ return(c(n=n,mean=m,stdev=s,skew=skew,kurtosis=kurt))
+ }
> sapply(mtcars[vars],mystats)
mpg hp wt
n 32.000000 32.0000000 32.00000000
mean 20.090625 146.6875000 3.21725000
stdev 6.026948 68.5628685 0.97845744
skew 0.610655 0.7260237 0.42314646
kurtosis -0.372766 -0.1355511 -0.02271075

扩展:一些用户描述的包也提供描述函数用于描述统计数据,如Hmisc,pastecs,psych,需要先安装,再使用。

例04:

> library(Hmisc)
载入需要的程辑包:survival
载入需要的程辑包:splines
载入需要的程辑包:Formula
Hmisc library by Frank E Harrell Jr Type library(help='Hmisc'), ?Overview, or ?Hmisc.Overview')
to see overall documentation. 载入程辑包:‘Hmisc’ 下列对象被屏蔽了from ‘package:survival’: untangle.specials 下列对象被屏蔽了from ‘package:base’: format.pval, round.POSIXt, trunc.POSIXt, units
> describe(mtcars[vars])
mtcars[vars] 3 Variables 32 Observations
-------------------------------------------------------------------------------------------------------------------------------------------------
mpg
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
32 0 25 20.09 12.00 14.34 15.43 19.20 22.80 30.09 31.30 lowest : 10.4 13.3 14.3 14.7 15.0, highest: 26.0 27.3 30.4 32.4 33.9
-------------------------------------------------------------------------------------------------------------------------------------------------
hp
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
32 0 22 146.7 63.65 66.00 96.50 123.00 180.00 243.50 253.55 lowest : 52 62 65 66 91, highest: 215 230 245 264 335
-------------------------------------------------------------------------------------------------------------------------------------------------
wt
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
32 0 29 3.217 1.736 1.956 2.581 3.325 3.610 4.048 5.293 lowest : 1.513 1.615 1.835 1.935 2.140, highest: 3.845 4.070 5.250 5.345 5.424
-------------------------------------------------------------------------------------------------------------------------------------------------

Hmisc包中的describe()函数:返回自变量(variables)与因变量(observations)的数量,缺省值(missing)的数量以及特殊值(unique values),平均值(mean),quantile,五个最大值与五个最小值。

例05:

> install.packages("pastecs")
trying URL 'http://cran.rstudio.com/bin/windows/contrib/3.0/pastecs_1.3-15.zip'
Content type 'application/zip' length 1629764 bytes (1.6 Mb)
opened URL
downloaded 1.6 Mb package ‘pastecs’ successfully unpacked and MD5 sums checked The downloaded binary packages are in
C:\Users\seven-wang\AppData\Local\Temp\Rtmp8aVakL\downloaded_packages
> library(pastecs)
载入需要的程辑包:boot 载入程辑包:‘boot’ 下列对象被屏蔽了from ‘package:survival’: aml > stat.desc(mtcars[vars])
mpg hp wt
nbr.val 32.0000000 32.0000000 32.0000000
nbr.null 0.0000000 0.0000000 0.0000000
nbr.na 0.0000000 0.0000000 0.0000000
min 10.4000000 52.0000000 1.5130000
max 33.9000000 335.0000000 5.4240000
range 23.5000000 283.0000000 3.9110000
sum 642.9000000 4694.0000000 102.9520000
median 19.2000000 123.0000000 3.3250000
mean 20.0906250 146.6875000 3.2172500
SE.mean 1.0654240 12.1203173 0.1729685
CI.mean.0.95 2.1729465 24.7195501 0.3527715
var 36.3241028 4700.8669355 0.9573790
std.dev 6.0269481 68.5628685 0.9784574
coef.var 0.2999881 0.4674077 0.3041285

pastecs包中有函数stat.desc():提供对统计数据的描述。

stat.desc(x,basic=TRUE,desc=TRUE,norm=FALSE,p=0.95)

·x:数据帧(data frame)或时间序列(time series);

·basic=TRUE(缺省状态):各种值的个数,包括缺省值(missing value),空值(null value),最小值,最大值,值域(range),和(sum).

·desc=TRUE(缺省状态):提供中间值(median),平均值(mean),均值的标准错误(standard error of the mean),95% confidence interval for the mean,variance,标准差(standard deviation),coefficient of variation.

·norm=TRUE(非缺省状态):返回正常的统计数据,包括skewness和kurtosis,以及它们的统计的重要性,the Shapiro-Wilk test of normality.

·p值的选项:用于计算the confidence interval for the mean(缺省状态默认为0.95 ).

例06:

> library(psych)
> describe(mtcars[vars])
var n mean sd median trimmed mad min max range skew kurtosis se
mpg 1 32 20.09 6.03 19.20 19.70 5.41 10.40 33.90 23.50 0.61 -0.37 1.07
hp 2 32 146.69 68.56 123.00 141.19 77.10 52.00 335.00 283.00 0.73 -0.14 12.12
wt 3 32 3.22 0.98 3.33 3.15 0.77 1.51 5.42 3.91 0.42 -0.02 0.17

psych包中的函数describe:提供不含缺失值的自变量(nonminssing observations),平均值(mean),标准差(standard deviation),中间值(median),边缘性均值(trimmed mean),median absolute deviation,最大值,最小值,值域(range),skew,kurtosis,the standard error of the mean.

注意:Hmics和psych包中都有decscribe()函数,一般使用最后载入的包中的函数。

2. 按组描述统计数

例07:

> aggregate(mtcars[vars],by=list(am=mtcars$am),mean)
am mpg hp wt
1 0 17.14737 160.2632 3.768895
2 1 24.39231 126.8462 2.411000
> aggregate(mtcars[vars],by=list(am=mtcars$am),sd)
am mpg hp wt
1 0 3.833966 53.90820 0.7774001
2 1 6.166504 84.06232 0.6169816

aggregate()函数:按组获得描述数据。

·有多于一组的变量,使用这样的代码:

by=list(name1=groupvar1,name2=groupvar2,......,nameN=groupvarN)

·仅允许使用单变量函数,如mean,standard deviation等。

例08(在RGui中完成的):

> install.packages("doBy")

--- 在此連線階段时请选用CRAN的鏡子 --- also installing the dependencies ‘mvtnorm’, ‘multcomp’

试开URL’http://ftp.ctex.org/mirrors/CRAN/bin/windows/contrib/3.0/mvtnorm_0.9-9995.zip' Content type 'application/zip' length 222319 bytes (217 Kb) 打开了URL downloaded 217 Kb

试开URL’http://ftp.ctex.org/mirrors/CRAN/bin/windows/contrib/3.0/multcomp_1.2-19.zip' Content type 'application/zip' length 599099 bytes (585 Kb) 打开了URL downloaded 585 Kb

试开URL’http://ftp.ctex.org/mirrors/CRAN/bin/windows/contrib/3.0/doBy_4.5-8.zip' Content type 'application/zip' length 2606320 bytes (2.5 Mb) 打开了URL downloaded 2.5 Mb

程序包‘mvtnorm’打开成功,MD5和检查也通过 程序包‘multcomp’打开成功,MD5和检查也通过 程序包‘doBy’打开成功,MD5和检查也通过

下载的二进制程序包在

C:\Users\seven-wang\AppData\Local\Temp\RtmpEZL947\downloaded_packages里

> library(doBy)

载入需要的程辑包:multcomp

载入需要的程辑包:mvtnorm

载入需要的程辑包:survival

载入需要的程辑包:splines

载入需要的程辑包:MASS

> summaryBy(mpg+hp+wt~am,data=mtcars,FUN=mystats)

am mpg.n mpg.mean mpg.stdev   mpg.skew mpg.kurtosis hp.n  hp.mean hp.stdev
1  0    19 17.14737  3.833966 0.01395038   -0.8031783   19 160.2632 53.90820
2  1    13 24.39231  6.166504 0.05256118   -1.4553520   13 126.8462 84.06232
      hp.skew hp.kurtosis wt.n  wt.mean  wt.stdev   wt.skew wt.kurtosis
1 -0.01422519  -1.2096973   19 3.768895 0.7774001 0.9759294   0.1415676
2  1.35988586   0.5634635   13 2.411000 0.6169816 0.2103128  -1.1737358

doBy包中的summarBy()函数:
summaryBy(formula,data=dataframe,FUN=function)

·formula:var1+var2+...+varN~groupvar1+groupvar2+...+groupvarM

其中~左边的是数值变量,右边的是分类好的变量。

例09(在RGui中完成):

> install.packages("psych")

试开URL’http://ftp.ctex.org/mirrors/CRAN/bin/windows/contrib/3.0/psych_1.3.2.zip'

Content type 'application/zip' length 2555708 bytes (2.4 Mb)

打开了URL

downloaded 2.4 Mb

程序包‘psych’打开成功,MD5和检查也通过

下载的二进制程序包在

C:\Users\seven-wang\AppData\Local\Temp\RtmpEZL947\downloaded_packages里

> library(psych)

> describeBy(mtcars[vars],mtcars$am)
group: 0
    var  n   mean    sd median trimmed   mad   min    max  range  skew kurtosis    se
mpg   1 19  17.15  3.83  17.30   17.12  3.11 10.40  24.40  14.00  0.01    -0.80  0.88
hp    2 19 160.26 53.91 175.00  161.06 77.10 62.00 245.00 183.00 -0.01    -1.21 12.37
wt    3 19   3.77  0.78   3.52    3.75  0.45  2.46   5.42   2.96  0.98     0.14  0.18
--------------------------------------------------------------------------
group: 1
    var  n   mean    sd median trimmed   mad   min    max  range skew kurtosis    se
mpg   1 13  24.39  6.17  22.80   24.38  6.67 15.00  33.90  18.90 0.05    -1.46  1.71
hp    2 13 126.85 84.06 109.00  114.73 63.75 52.00 335.00 283.00 1.36     0.56 23.31
wt    3 13   2.41  0.62   2.32    2.39  0.68  1.51   3.57   2.06 0.21    -1.17  0.17
psych包中的describeBy()函数:提供对统计数据的描述。

·但是,该函数不适用于任何的一个函数,则有多组变量时需要写成

list(groupvar1,groupvar2,...,groupvarN)

并且仅当组间变量交叉时,没有空括号(no empty cells when the grouping variables are crossed)

例10:

> install.packages("reshape")
trying URL 'http://cran.rstudio.com/bin/windows/contrib/3.0/reshape_0.8.4.zip'
Content type 'application/zip' length 124891 bytes (121 Kb)
opened URL
downloaded 121 Kb package ‘reshape’ successfully unpacked and MD5 sums checked The downloaded binary packages are in
C:\Users\seven-wang\AppData\Local\Temp\Rtmpwj6VpM\downloaded_packages
> library(reshape)
载入需要的程辑包:plyr 载入程辑包:‘reshape’ 下列对象被屏蔽了from ‘package:plyr’: rename, round_any > dstats<-function(x)(c(n=length(x),mean=mean(x),sd=sd(x)))
> dfm<-melt(mtcars,measure.vars=c("mpg","hp","wt"),id.vars=c("am","cyl"))
> cast(dfm,am+cyl+variable~.,dstats)
am cyl variable n mean sd
1 0 4 mpg 3 22.900000 1.4525839
2 0 4 hp 3 84.666667 19.6553640
3 0 4 wt 3 2.935000 0.4075230
4 0 6 mpg 4 19.125000 1.6317169
5 0 6 hp 4 115.250000 9.1787799
6 0 6 wt 4 3.388750 0.1162164
7 0 8 mpg 12 15.050000 2.7743959
8 0 8 hp 12 194.166667 33.3598379
9 0 8 wt 12 4.104083 0.7683069
10 1 4 mpg 8 28.075000 4.4838599
11 1 4 hp 8 81.875000 22.6554156
12 1 4 wt 8 2.042250 0.4093485
13 1 6 mpg 3 20.566667 0.7505553
14 1 6 hp 3 131.666667 37.5277675
15 1 6 wt 3 2.755000 0.1281601
16 1 8 mpg 2 15.400000 0.5656854
17 1 8 hp 2 299.500000 50.2045815
18 1 8 wt 2 3.370000 0.2828427

reshape包,
dfm<-melt(dataframe,measure.vars=y,id.vars=g)

cast(dfm,groupvar1+groupvar2+...+variable~.,FUN)

Chapter 07-Basic statistics(Part1 描述统计数据)的更多相关文章

  1. Intro to Python for Data Science Learning 8 - NumPy: Basic Statistics

    NumPy: Basic Statistics from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/ch ...

  2. SPSS学习系列之SPSS Statistics导入读取数据(多种格式)(图文详解)

    不多说,直接上干货! SPSS Statistics导入读取数据的步骤: 文件  ->  导入数据 成功! 欢迎大家,加入我的微信公众号:大数据躺过的坑     免费给分享       同时,大 ...

  3. Chapter 04—Basic Data Management

    1. 创建新的变量 variable<-expression expression:包含一组大量的操作符和函数.常用的算术操作符如下表: 例1:根据已知变量,创建新变量的三种途径 > my ...

  4. Spark MLlib 之 Basic Statistics

    Spark MLlib提供了一些基本的统计学的算法,下面主要说明一下: 1.Summary statistics 对于RDD[Vector]类型,Spark MLlib提供了colStats的统计方法 ...

  5. 《Java 8 in Action》Chapter 6:用流收集数据

    1. 收集器简介 collect() 接收一个类型为 Collector 的参数,这个参数决定了如何把流中的元素聚合到其它数据结构中.Collectors 类包含了大量常用收集器的工厂方法,toLis ...

  6. Chapter 06—Basic graphs

    三. 柱状图(Histogram) 1. hist():画柱状图 ·breaks(可选项):控制柱状图的小柱子的条数: ·freq=FALSE:基于概率(probability),而非频率(frequ ...

  7. Chapter 2 Basic Elements of JAVA

    elaborate:详细说明 Data TypesJava categorizes data into different types, and only certain operationscan ...

  8. 吴裕雄--天生自然 R语言开发学习:基本统计分析(续三)

    #---------------------------------------------------------------------# # R in Action (2nd ed): Chap ...

  9. 吴裕雄--天生自然 R语言开发学习:基本统计分析

    #---------------------------------------------------------------------# # R in Action (2nd ed): Chap ...

随机推荐

  1. 《吊打面试官》系列-Redis基础

    你知道的越多,你不知道的越多 点赞再看,养成习惯 前言 Redis在互联网技术存储方面使用如此广泛,几乎所有的后端技术面试官都要在Redis的使用和原理方面对小伙伴们进行360°的刁难.作为一个在互联 ...

  2. 题解 【洛谷】AT654

    题解 AT654 [役人[错题已隐藏]] 此题题面没搬过来, 会日语的dalao可以自行去ATCoder查看. 给出此题的JavaAC代码: public class Main { public st ...

  3. [tesseract-ocr]OCR图像识别Ubuntu下环境包安装

    问题: ImportError: libSM.so.6: cannot open shared object file: No such file or directory 解决: sudo apt- ...

  4. 关于GC(上):Apache的POI组件导致线上频繁FullGC问题排查及处理全过程

    某线上应用在进行查询结果导出Excel时,大概率出现持续的FullGC.解决这个问题时,记录了一下整个的流程,也可以作为一般性的FullGC问题排查指导. 1. 生成dump文件 为了定位FullGC ...

  5. 奶牛邻居——treap+契比雪夫距离+并查集

    题目描述 了解奶牛们的人都知道,奶牛喜欢成群结队.观察约翰的N(1≤N≤100000)只奶牛,你会发现她们已经结成了几个“群”. 每只奶牛在吃草的时候有一个独一无二的位置坐标Xi,Yi(l≤Xi,Yi ...

  6. 『图论』有向图强连通分量的Tarjan算法

    在图论中,一个有向图被成为是强连通的(strongly connected)当且仅当每一对不相同结点u和v间既存在从u到v的路径也存在从v到u的路径.有向图的极大强连通子图(这里指点数极大)被称为强连 ...

  7. jQuery 触发事件 移动端和pc端的区别

    jQuery 触发事件 移动端和pc端的区别 <pre>mousedown event.pageXmousemove event.pageXmouseup event.pageXtouch ...

  8. css的块级元素和行级元素

    块级元素 概念: 每个块级元素都是独自占一行.  元素的高度.宽度.行高和边距都是可以设置的.   元素的宽度如果不设置的话,默认为父元素的宽度(父元素宽度100%) <address>/ ...

  9. VMware虚拟机添加5个RAID10磁盘并挂载

    1.打开虚拟机之前先添加硬盘设备 具体添加方法详见我https://www.cnblogs.com/Ghost-m/p/11707996.html这个博客 制作RAID需要用到madam命令 mdad ...

  10. Python3.7.1学习(八) Python访问SQL Server数据库

    一.pip install pymssql即可安装pymssql库 二.Python连接SQL Server数据库     实例代码如下: # -*- coding:utf-8 -*-"&q ...