更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/

拉格朗日对偶性

在约束最优化问题中,拉格朗日对偶性(Lagrange duality)可以将原始问题转换为对偶问题,然后通过求解对偶问题的解得到原始问题的解。

一、原始问题

1.1 约束最优化问题

假设\(f(x),c_i(x),h_j(x)\)是定义在\(R^n\)上的连续可微函数,则约束最优化问题的原始问题为
\[
\begin{align}
& \underbrace{min}_{x\in{R^n}}f(x) \\
& s.t. \, c_i(x)\leq0,\quad{i=1,2,\cdots,k} \\
& h_j(x)=0,\quad{j=1,2,\cdots,l}
\end{align}
\]
如果不考虑约束条件,约束问题就是
\[
\underbrace{min}_{x\in{R^n}}f(x)
\]
因为已经假设\(f(x),c_i(x),h_j(x)\)连续可微,直接对\(f(x)\)求导取0,即可求出最优解,但是这里有约束条件,因此得想办法去掉约束条件,而拉格朗日函数正是干这个的。

1.2 广义拉格朗日函数

为了解决上述原始问题,引入广义拉格朗日函数(generalized Lagrange function)
\[
L(x,\alpha,\beta)=f(x)+\sum_{i=1}^k\alpha_ic_i(x)+\sum_{j=1}^l\beta_jh_j(x)
\]
其中\(x=(x^{(1)},x^{(2)},\cdots,x^{(n)})^T\in{R^n}\),\(\alpha_i\geq0,\beta_j\)是拉格朗日乘子。

如果把\(L(x,\alpha,\beta)\)看作是关于\(\alpha_i,\beta_j\)的函数,求其最大值,即
\[
\underbrace{max}_{\alpha,\beta}L(x,\alpha,\beta)
\]
由于\(\alpha_i,\beta_j\)作为拉格朗日乘子已经可知,因此可以把\(L(x,\alpha,\beta)\)看作是关于\(x\)的函数
\[
\theta_P(x)=\underbrace{max}_{\alpha,\beta}L(x,\alpha,\beta)
\]
其中下标\(P\)表示原始问题。

1.3 约束条件的考虑

假设给定某个\(x\)。

  1. 如果\(x\)违反原始问题的约束条件,即存在某个\(i\)使得\(c_i(w)>0\)或存在某个\(j\)使得\(h_j(w)\neq0\),则有
    \[
    \theta_P{(x)}=\underbrace{max}_{\alpha,\beta:\alpha_i\leq0}[f(x)+\sum_{i=1}^k\alpha_ic_i(x)+\sum_{i=1}^l\beta_jh_j(x)] = +\infty
    \]
    因为如果某个\(i\)使得约束条件\(c_i(x)>0\),则可以令\(\alpha_i\rightarrow{+\infty}\);如果某个\(j\)使得\(h_j(x)\neq0\),则可以使得\(\beta_jh_j(x)\rightarrow{+\infty}\)。
  2. 如果\(x\)满足原始问题的约束条件,\(h_j(x)=0\)并且\(\alpha_ic_i(x)\leq0\),因此\(\theta_P{(x)}\)的最大值即为\(f(x)\),即\(\theta_P{(x)}=f(x)\)。

通过对约束条件的考虑即可得
\[
\theta_P{(x)} =
\begin{cases}
f(x), & \text{$x$满足约束条件} \\
+\infty, & \text{其他}
\end{cases}
\]
所以如果考虑极小化问题
\[
\underbrace{min}_x\theta_P{(x)}_{x} = \underbrace{min}_{x}\,\underbrace{max}_{\alpha,\beta}L(x,\alpha,\beta) = \underbrace{min}_{x}f(x)
\]
它与原始问题是等价的,其中\(\underbrace{min}_{x}\,\underbrace{max}_{\alpha,\beta}L(x,\alpha,\beta)\)被称作广义拉格朗日函数的极小极大问题。

通过广义拉格朗日函数的极小极大问题,可以定义原始问题的最优值
\[
p^*=\underbrace{min}_x\theta_P(x)
\]
这一节主要通过使用拉格朗日函数把原始约束问题转化为无约束问题,即将约束问题无约束化。

二、对偶问题

定义一个关于\(\alpha,\beta\)的函数
\[
\theta_D(\alpha,\beta)=\underbrace{min}_xL(x,\alpha,\beta)
\]
其中等式右边是关于\(x\)的函数的最小化,即确定了\(x\)的值,最小值只与\(\alpha,\beta\)有关。
如果极大化\(\theta_D(\alpha,\beta)\),即
\[
\underbrace{max}_{\alpha,\beta}\theta_D(\alpha,\beta)=\underbrace{max}_{\alpha,\beta}\underbrace{min}_{x}L(x,\alpha,\beta)
\]
上述就是原始问题的对偶问题,其中\(\underbrace{max}_{\alpha,\beta}\underbrace{min}_{x}L(x,\alpha,\beta)\)也称为广义拉格朗日函数的极大极小问题。

该对偶问题的原始问题为
\[
\underbrace{min}_x\theta_P{(x)}_{x} = \underbrace{min}_{x}\,\underbrace{max}_{\alpha,\beta}L(x,\alpha,\beta)
\]
原始问题是先固定\(L(x,\alpha,\beta)\)中的\(x\),优化出参数\(\alpha,\beta\),再优化\(x\);对偶问题是先固定\(\alpha,\beta\),优化出\(x\),然后再确定\(\alpha,\beta\)。
对偶问题的最优值为
\[
d^*=\underbrace{max}_{\alpha,\beta}\theta_D(\alpha,\beta)
\]

三、原始问题和对偶问题的关系

3.1 定理1

如果原始问题和对偶问题都有最优解,则
\[
d^* = \underbrace{max}_{\alpha,\beta}\underbrace{min}_xL(x,\alpha,\beta)\leq\underbrace{min}_x\underbrace{max}_{\alpha,\beta}L(x,\alpha,\beta)=p^*
\]
因为对任意的\(\alpha,\beta,x\),都有
\[
\theta_D(\alpha,\beta)=\underbrace{min}_xL(x,\alpha,\beta)\leq{L(x,\alpha,\beta)}\leq\underbrace{max}_{\alpha,\beta}L(x,\alpha,\beta)=\theta_P(x)
\]

\[
theta_D(\alpha,\beta)\leq\theta_P(x)
\]
由于原始问题和对偶问题都有最优值,所以
\[
\underbrace{max}_{\alpha,\beta}\theta_D(\alpha,\beta)\leq\underbrace{min}_x\theta_P(x)
\]

\[
d^*=\underbrace{max}_{\alpha,\beta}\underbrace{min}_xL(x,\alpha,\beta)\leq\underbrace{min}_x\underbrace{max}_{\alpha,\beta}L(x,\alpha,\beta)=p^*
\]
上述说明了原始问题的最优值不小于对偶问题的最优值,但是我们要通过对偶问题来求解原始问题,就必须得使原始问题的最优值与对偶问题的最优值相等。

3.2 推论1

通过定理1可以推出:假设\(x^*,\alpha^*,\beta^*\)分别是原始问题和对偶问题的可行解,如果\(d^*=p^*\),则\(x^*,\alpha^*,\beta^*\)分别是原始问题和对偶问题的最优解。

当原始问题和对偶问题的最优值相等\(d^*=p^*\),如果使用对偶问题比求解原始问题简单,则可以用对偶问题求解原始问题。

3.3 定理2

对于原始问题和对偶问题,假设函数\(f(x)\)和\(c_i(x)\)是凸函数,\(h_j(x)\)是仿射函数(注:仿射函数是一阶多项式构成的函数,\(f(x)=Ax+b\),\(A\)是矩阵,\(x,b\)是向量);并且假设不等式约束\(c_i(x)\)是严格可行的,即存在\(x\),对所有的\(i\)有\(c_i(x)<0\),则存在\(x^*,\alpha^*,\beta^*\),使\(x^*\)是原始问题的解,\(\alpha^*,\beta^*\)是对偶问题的解,并且会有
\[
p^*=d^*=L(x^*,\alpha^*,\beta^*)
\]

3.4 定理3(KTT条件)

对于原始问题和对偶问题,假设函数\(f(x)\)和\(c_i(x)\)是凸函数,\(h_j(x)\)是仿射函数;并且假设不等式约束\(c_i(x)\)是严格可行的,即存在\(x\),对所有的\(i\)有\(c_i(x)<0\),则\(x^*\)是原始问题的解,\(\alpha^*,\beta^*\)是对偶问题的解的充分必要条件是\(x^*,\alpha^*,\beta^*\)满足下面的Karush-Kuhn-Tucker(KKT)条件
\[
\begin{align}
& \nabla_xL(x^*,\alpha^*,\beta^*)=0 \\
& \nabla_\alpha{L(x^*,\alpha^*,\beta^*)}=0 \\
& \nabla_\beta{L(x^*,\alpha^*,\beta^*)}=0 \\
& \alpha_i^*c_i(x^*)=0,\quad{i=1,2,\cdots,k} \\
& c_i(x^*)\leq0,\quad{i=1,2,\cdots,k} \\
& \alpha_i^*\geq0,\quad{i=1,2,\cdots,k} \\
& h_j(x^*)=0,\quad{j=1,2,\cdots,l}
\end{align}
\]
其中\(\alpha_i^*c_i(x^*)=0,\quad{i=1,2,\cdots,k}\)是KKT的对偶互补条件,由该条件可知:如果\(\alpha_i^*>0\),则\(c_i(x^*)=0\)。

A-08 拉格朗日对偶性的更多相关文章

  1. 3. 支持向量机(SVM)拉格朗日对偶性(KKT)

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

  2. 拉格朗日对偶性(Lagrange duality)

    目录 拉格朗日对偶性(Lagrange duality) 1. 从原始问题到对偶问题 2. 弱对偶与强对偶 3. KKT条件 Reference: 拉格朗日对偶性(Lagrange duality) ...

  3. 简易解说拉格朗日对偶(Lagrange duality)(转载)

    引言:尝试用最简单易懂的描述解释清楚机器学习中会用到的拉格朗日对偶性知识,非科班出身,如有数学专业博友,望多提意见! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不 ...

  4. 简易解说拉格朗日对偶(Lagrange duality)

    引言:尝试用最简单易懂的描述解释清楚机器学习中会用到的拉格朗日对偶性知识,非科班出身,如有数学专业博友,望多提意见! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不 ...

  5. 支持向量机(SVM)基础

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  6. SVM支撑向量机原理

    转自:http://blog.csdn.net/v_july_v/article/details/7624837 目录(?)[-] 支持向量机通俗导论理解SVM的三层境界 前言 第一层了解SVM 1分 ...

  7. 06机器学习实战之SVM

    对偶的概念 https://blog.csdn.net/qq_34531825/article/details/52872819?locationNum=7&fps=1 拉格朗日乘子法.KKT ...

  8. 支持向量机通俗导论(理解SVM的三层境界)(ZT)

    支持向量机通俗导论(理解SVM的三层境界) 原文:http://blog.csdn.net/v_JULY_v/article/details/7624837 作者:July .致谢:pluskid.白 ...

  9. 支持向量机通俗导论(理解SVM的三层境界)【非原创】

    支持向量机通俗导论(理解SVM的三层境界) 作者:July :致谢:pluskid.白石.JerryLead. 出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vecto ...

随机推荐

  1. 变量的范围 namespace

    变量的范围 范围 变量有 菊部变量 和 全局变量之分, local variable 和 global variable 一般在函数体外定义的变量是全局的,函数体内定义的变量只能在函数内使用 注意:在 ...

  2. 【LeetCode】763-划分字母区间

    title: 763-划分字母区间 date: 2019-04-15 21:10:46 categories: LeetCode tags: 字符串 贪心思想 双指针 题目描述 字符串 S 由小写字母 ...

  3. Python高效编程技巧实战 实战编程+面试典型问题 中高阶程序员过渡

    下载链接:https://www.yinxiangit.com/603.html 目录:   如果你想用python从事多个领域的开发工作,且有一些python基础, 想进一步提高python应用能力 ...

  4. linux下创建git代码

    1.创建一个新的repository: 先在github上创建并写好相关名字,描述. $cd ~/hello-world        //到hello-world目录 $git init       ...

  5. 搭建Nuget服务器(Nuget私服)

    一.前言 对公司或者对个人来说,经过一段时间的沉淀之后,都会有一些框架或者模块,为了对这些框架或者模块进行更好的管理和维护,也为了方便后面的开发或者其他同事,我们可以在我们本地或者内网搭建一个Nuge ...

  6. Vue2.x-社交网络程序项目的总结

    最近几天一直在学习Vue的课程,通过这个项目进行进一步的学习Vue方面的知识.掌握如何使用Vue搭建前端,如何请求Node.js写好的后端接口. 一.实现前后端连载 首先在后端的文件中  vue  i ...

  7. mysql中查询字段为null或者不为null的sql语句怎么写?

    在mysql中,查询某字段为空时,切记不可用 = null,而是 is null,不为空则是 is not null select * from table where column is null; ...

  8. 实战spring自定义属性(schema)

    关于spring自定义属性(schema) 在开发Dubbo应用的时候,我们会在xml中做以下类似的配置: <dubbo:application name="dubbo_service ...

  9. 谁是狸猫谁是太子?--戏说java构造器

    故事背景 <狸猫换太子>在我国民间文学中很出名,故事剧情大致如下:北宋第三位皇帝宋真宗赵恒年长无子,他的两个妃子刘妃与李妃同时怀了身孕.真宗召见二人,各赐信物,并声明哪个生了儿子就立谁为皇 ...

  10. Ubuntu+docker+jenkins安装详细指南

    最近项目上开始实行自动化测试,避免不了与jenkins等持续集成工具打交道,今天就给大家分享一下有关jenkins的简单安装和使用 1,准备环境 (1)ubuntu系统 (2)docker (3)je ...