360百科定义:

动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法–动态规划。1957年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。

基本思想:

动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。

基本概念:

1. 多阶段决策问题

如果一类活动过程可以分为若干个互相联系的阶段**,在每一个阶段都需作出决策(采取措施)**,一个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了一个过程的活动路线,则称它为多阶段决策问题。

各个阶段的决策构成一个决策序列,称为一个策略。每一个阶段都有若干个决策可供选择,因而就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可以用数量来确定。策略不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在预定的标准下达到最好的效果.

2.动态规划问题中的术语

阶段:把所给求解问题的过程恰当地分成若干个相互联系的阶段,以便于求解,过程不同,阶段数就可能不同.描述阶段的变量称为阶段变量。在多数情况下,阶段变量是离散的,用k表示。此外,也有阶段变量是连续的情形。如果过程可以在任何时刻作出决策,且在任意两个不同的时刻之间允许有无穷多个决策时,阶段变量就是连续的。

在前面的例子中,第一个阶段就是点A,而第二个阶段就是点A到点B,第三个阶段是点B到点C,而第四个阶段是点C到点D。

**状态:**状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点。

**过程的状态通常可以用一个或一组数来描述,称为状态变量。**一般,状态是离散的,但有时为了方便也将状态取成连续的。当然,在现实生活中,由于变量形式的限制,所有的状态都是离散的,但从分析的观点,有时将状态作为连续的处理将会有很大的好处。此外,状态可以有多个分量(多维情形),因而用向量来代表;而且在每个阶段的状态维数可以不同。

当过程按所有可能不同的方式发展时,过程各段的状态变量将在某一确定的范围内取值。状态变量取值的集合称为状态集合。

无后效性:我们要求状态具有下面的性质:如果给定某一阶段的状态,则在这一阶段以后过程的发展不受这阶段以前各段状态的影响,所有各阶段都确定时,整个过程也就确定了。换句话说,过程的每一次实现可以用一个状态序列表示,在前面的例子中每阶段的状态是该线路的始点,确定了这些点的序列,整个线路也就完全确定。从某一阶段以后的线路开始,当这段的始点给定时,不受以前线路(所通过的点)的影响。状态的这个性质意味着过程的历史只能通过当前的状态去影响它的未来的发展,这个性质称为无后效性。

**决策:**一个阶段的状态给定以后,从该状态演变到下一阶段某个状态的一种选择(行动)称为决策。在最优控制中,也称为控制。在许多问题中,决策可以自然而然地表示为一个数或一组数。不同的决策对应着不同的数值。描述决策的变量称决策变量,因状态满足无后效性,故在每个阶段选择决策时只需考虑当前的状态而无须考虑过程的历史。

决策变量的范围称为允许决策集合

策略:由每个阶段的决策组成的序列称为策略。对于每一个实际的多阶段决策过程,可供选取的策略有一定的范围限制,这个范围称为允许策略集合。允许策略集合中达到最优效果的策略称为最优策略。

适用题目条件:

任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适用动态规划的问题必须满足最优化原理和无后效性。

1.最优化原理(最优子结构性质) 最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。

2**.无后效性**:将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。

3.子问题的重叠性 动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。其中的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其它的算法。

相关题目练习及解法传送门:

【动态规划例题-数塔问题】-C++

【动态规划DP】传娃娃-C++

持续更新中。。。

【动态规划法(DP)】-C++的更多相关文章

  1. 【一天一道LeetCode】#5 Longest Palindromic Substring

    一天一道LeetCode系列 (一)题目 Given a string S, find the longest palindromic substring in S. You may assume t ...

  2. 【转载】ACM总结——dp专辑

    感谢博主——      http://blog.csdn.net/cc_again?viewmode=list       ----------  Accagain  2014年5月15日 动态规划一 ...

  3. 【DP专辑】ACM动态规划总结

    转载请注明出处,谢谢.   http://blog.csdn.net/cc_again?viewmode=list          ----------  Accagain  2014年5月15日 ...

  4. 最大子段和的DP算法设计及其效率测试

    表情包形象取自番剧<猫咪日常> 那我也整一个 曾几何时,笔者是个对算法这个概念漠不关心的人,由衷地感觉它就是一种和奥数一样华而不实的存在,即便不使用任何算法的思想我一样能写出能跑的程序 直 ...

  5. 动态规划法(十)最长公共子序列(LCS)问题

    问题介绍   给定一个序列\(X=<x_1,x_2,....,x_m>\),另一个序列\(Z=<z_1,z_2,....,z_k>\)满足如下条件时称为X的子序列:存在一个严格 ...

  6. 动态规划法(四)0-1背包问题(0-1 Knapsack Problem)

      继续讲故事~~   转眼我们的主人公丁丁就要离开自己的家乡,去大城市见世面了.这天晚上,妈妈正在耐心地帮丁丁收拾行李.家里有个最大能承受20kg的袋子,可是妈妈却有很多东西想装袋子里,已知行李的编 ...

  7. 初探动态规划(DP)

    学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...

  8. 【DP专辑】ACM动态规划总结(转)

    http://blog.csdn.net/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间效率高,代码量少,多元性强, ...

  9. Poj_1088_滑雪(DP)

    一.Description(poj1088) Michael喜欢滑雪百这并不奇怪,  因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载 ...

随机推荐

  1. 超详细SQL SERVER 2016跨网段和局域网发布订阅配置图解和常见问题

    原文:超详细SQL SERVER 2016跨网段和局域网发布订阅配置图解和常见问题 转载标明出处:http://blog.csdn.net/u012861467 前方高能,要有点耐心,图片较多,注意在 ...

  2. Win10《芒果TV》商店版更新v3.2.1:优化手机版卡顿,修复推送故障

    此版本是小版本更新,主要是修复上一版本发布后暴露的部分体验问题,以免进一步扩大影响,小幅修复后更新上线. 芒果TV UWP V3.2.1更新内容清单: 1.优化和修复列表预加载机制的本地保存丢失导致的 ...

  3. Index of /android/repository

    放这里了,总是记不住... https://mirrors.zzu.edu.cn/android/repository/

  4. TIFF图片简介

    每个TIFF文件都是从指示字节顺序的两个字节开始的.“II”表示小字节在先.“MM”表示大字节在先字节顺序.后面的两个字节表示数字42.数字42是“为了其深刻的哲学意义"而选择的. 42的读 ...

  5. Creating a Linux Daemon (service) in Delphi

    With the introduction of the Linux target for Delphi, a wide range of possibilities are opened up to ...

  6. WCSTOMBS 函数不支持中文件的解决方法(设置代码页)

    代码页没有进行设置.需要调用locale.h 中定义的一个函数设置默认的代码页 _tsetlocale(LC_ALL,_T(""));//设置代码页  wcstombs(sendB ...

  7. Delphi 的RTTI机制浅探3(超长,很不错)

    转自:http://blog.sina.com.cn/s/blog_53d1e9210100uke4.html 目录========================================== ...

  8. 配置我的Ubuntu Server记(包括桌面及VNC,SSH,NTP,NFS服务) good

    跟老板申请买了一台配置相对较好的计算机回来做GPU计算,当然,不能独享,所以做成服务器让大家都来用. 这篇日志用来记录配置过程中遇到的一些问题,以方便下次不需要到处谷歌度娘. 安装Server版系统 ...

  9. Linux精要

    Linux入门精要 Linux历史 1970年: linux元年,起始开发者为 Kenneth Lane Thompson 和 Dernis Ritchie, 现在知道为啥很多计算机是用1970年1月 ...

  10. 【搜索引擎】Solr全文检索近实时查询优化

    设置多个搜索建议查找算法 <searchComponent name="suggest" class="solr.SuggestComponent"> ...