Bzoj 2839 集合计数 题解
2839: 集合计数
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 495 Solved: 271
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
Sample Output
HINT
【样例说明】
假设原集合为{A,B,C}
则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}
【数据说明】
对于100%的数据,1≤N≤1000000;0≤K≤N;
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include <cmath>
#include <map>
#define N 1000005
using namespace std;
int n,k,p=;
long long jc[N],ni[N],xp[N];
long long ksm(long long x,long long z)
{
long long ans=;
while(z>)
{
if(z&)
{
ans*=x;
ans%=p;
}
x*=x;x%=p;
z>>=;
}
return ans;
}
int main()
{
scanf("%d%d",&n,&k);
jc[]=;xp[]=;
for(int i=;i<=n;i++)
{
jc[i]=(jc[i-]*i)%p;
xp[i]=(xp[i-]*)%p;
}
ni[n]=ksm(jc[n],p-);
for(int i=n-;i>=;i--)ni[i]=(ni[i+]*(i+))%p;
ni[]=;long long now=;
long long ans=;
for(int i=n-k;i>=;i--)
{
long long tmp=((((now-)*jc[n-k]%p)*ni[i]%p)*ni[n-k-i])%p;
if(i&)ans=(ans-tmp+p)%p;
else
{
ans+=tmp;
ans%=p;
}
now*=now;
now%=p;
}
ans*=((jc[n]*ni[k])%p*ni[n-k])%p;
ans%=p;
printf("%lld\n",ans);
return ;
}
Bzoj 2839 集合计数 题解的更多相关文章
- BZOJ 2839: 集合计数 解题报告
BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...
- BZOJ 2839: 集合计数 [容斥原理 组合]
2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...
- bzoj 2839 集合计数 容斥\广义容斥
LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...
- ●BZOJ 2839 集合计数
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2839 题解: 容斥原理 真的是神题!!! 定义 f[k] 表示交集大小至少为 k时的方案数怎 ...
- [BZOJ 2839]集合计数
Description 题库链接 有 \(2^n\) 个集合,每个集合只包含 \([1,n]\) ,且这些集合两两不同.问有多少种选择方法(至少选一个),使得这些集合交集大小为 \(k\) . \(0 ...
- bzoj 2839 : 集合计数 容斥原理
因为要在n个里面选k个,所以我们先枚举选的是哪$k$个,方案数为$C_{n}^k$ 确定选哪k个之后就需要算出集合交集正为好这$k$个的方案数,考虑用容斥原理. 我们还剩下$n-k$个元素,交集至少为 ...
- bzoj 2839 集合计数——二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( g(i) \) 表示至少有 i 个, \( f(i) \) 表示恰好有 i ...
- bzoj 2839 集合计数 —— 二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( f(i) \) 为至少 \( i \) 个选择,则 \( f(i) = C_ ...
- bzoj 2839: 集合计数【容斥原理+组合数学】
首先,考虑容斥,我们所要的答案是并集至少有\( k \)个数的方案数减去并集至少有\( k+1 \)个数的方案数加上并集至少有\( k \)个数的方案数-- 在n个数中选i个的方案数是\( C_{n} ...
随机推荐
- Win8 Metro(C#)数字图像处理--2.38Hough变换直线检测
原文:Win8 Metro(C#)数字图像处理--2.38Hough变换直线检测 [函数名称] Hough 变换直线检测 HoughLineDetect(WriteableBit ...
- TLD单目标跟踪算法程序详解--OpenTLD Code 详解
TLD算法原理介绍:http://www.cnblogs.com/liuyihai/p/8306419.html OpenTLD源代码页: https://github.com/zk00006/Ope ...
- Android 9.0 Dialog不显示
Tester报了一个bug,大概如下: 页面:Activity1 dialog1(半透明遮罩样式) Activity2 dialog2 场景:Activity1弹出dialog1,dialog1弹出a ...
- SignalR的简单实现(一)
原文:SignalR的简单实现(一) ASP.NET SignalR是ASP.NET开发人员的一个新库,它使您的应用程序添加实时Web功能变得非常简单.什么是"实时网络"功能?能够 ...
- JVM的几个介绍
关于jvm内存的几点 jvm在运行时分为方法区(Method Area) .虚拟机栈(VM Stack).本地方法栈(Native Method Stack).堆 (Heap).程序计数器 (Prog ...
- Spring MVC的工作原理,我们来看看其源码实现
前言 开心一刻 晚上陪老丈人吃饭,突然手机响了,我手贱按了免提……哥们:快出来喝酒!哥几个都在呢!我:今天不行,我现在陪老丈人吃饭呢.哥们:那你抓紧喝,我三杯白酒,把我岳父放倒了才出来的,你也快点.看 ...
- MySQL操作详解
创建并使用数据库 查看服务器上的数据库:SHOW DATABASES; 创建数据库:CREATE DATABASE <数据库名>; 指明使用何数据库:USE <数据库名> 创建 ...
- Qt DLL总结【二】-创建及调用QT的 DLL(三篇)good
目录 Qt DLL总结[一]-链接库预备知识 Qt DLL总结[二]-创建及调用QT的 DLL Qt DLL总结[三]-VS2008+Qt 使用QPluginLoader访问DLL 开发环境:VS20 ...
- 给 Qt sqlite 增加加密功能
整合sqlite代码 开源的sqlite中没有实现加密的功能,所以如果需要加密功能,需要自己实现 sqlite3_keysqlite3_rekey 等相关函数 不过开源的 wxsqlite3中已经实现 ...
- python代码检查工具pylint 让你的python更规范
1.pylint是什么? Pylint 是一个 Python 代码分析工具,它分析 Python 代码中的错误,查找不符合代码风格标准(Pylint 默认使用的代码风格是 PEP 8,具体信息,请参阅 ...