1.首先造一个测试数据集

#coding:utf-8
import numpy
import pandas as pd from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import LabelBinarizer
from sklearn.preprocessing import MultiLabelBinarizer def t2():
testdata = pd.DataFrame({'pet': ['chinese', 'english', 'english', 'math'],
'age': [6 , 5, 2, 2],
'salary':[7, 5, 2, 5]})
print testdata t2()

这里我们把 petagesalary 都看做类别特征,所不同的是 age 和 salary 都是数值型,而 pet 是字符串型。我们的目的很简单: 把他们全都二值化,进行 one-hot 编码

2. 对付数值型类别变量

对 age 进行二值化很简单,直接调用 OneHotEncoder

OneHotEncoder(sparse = False).fit_transform(testdata.age) # testdata.age 这里与 testdata[['age']]等价

然而运行结果是 array([[ 1.,  1.,  1.,  1.]]),这个结果是错的,从 Warning 信息中得知,原因是 sklearn 的新版本中,OneHotEncoder 的输入必须是 2-D array,而 testdata.age 返回的 Series 本质上是 1-D array,所以要改成

OneHotEncoder(sparse = False).fit_transform(testdata[['age']])

我们得到了我们想要的:

array([[ 0.,  1.,  0.],
      [ 0.,  0.,  1.],
      [ 1.,  0.,  0.],
      [ 1.,  0.,  0.]])

可以用同样的方法对 salary 进行 OneHotEncoder, 然后将结果用 numpy.hstack() 把两者拼接起来得到变换后的结果

import numpy

result1 = OneHotEncoder(sparse = False).fit_transform(testdata[['age']])
result2 = OneHotEncoder(sparse=False).fit_transform(testdata[['salary']])
final_output = numpy.hstack((result1,result2))
print final_output

不过这样的代码略显冗余,既然 OneHotEncoder() 可以接受 2-D array 输入,那我们可以写成这样

result = OneHotEncoder(sparse = False).fit_transform( testdata[['age', 'salary']])

结果为
array([[ 0.,  1.,  0.,  0.,  1.,  0.],
      [ 0.,  0.,  1.,  0.,  0.,  1.],
      [ 1.,  0.,  0.,  1.,  0.,  0.],
      [ 1.,  0.,  0.,  1.,  0.,  0.]])

有时候我们除了得到最终编码结果,还想知道结果中哪几列属于 age 的二值化编码,哪几列属于 salary 的,这时候我们可以通过 OneHotEncoder() 自带的 feature_indices_ 来实现这一要求,比如这里 feature_indices_ 的值是[0, 3, 6],表明 第[0:3]列是age的二值化编码,[3:6]是salary的。更多细节请参考 sklearn 文档,

3. 对付字符串型类别变量

遗憾的是OneHotEncoder无法直接对字符串型的类别变量编码,也就是说OneHotEncoder().fit_transform(testdata[['pet']])这句话会报错(不信你试试)。已经有很多人在 stackoverflow 和 sklearn 的 github issue 上讨论过这个问题,但目前为止的 sklearn 版本仍没有增加OneHotEncoder对字符串型类别变量的支持,所以一般都采用曲线救国的方式:

  • 方法一 先用 LabelEncoder() 转换成连续的数值型变量,再用 OneHotEncoder() 二值化

  • 方法二 直接用 LabelBinarizer() 进行二值化

然而要注意的是,无论 LabelEncoder() 还是 LabelBinarizer(),他们在 sklearn 中的设计初衷,都是为了解决标签 y 的离散化,而非输入 X, 所以他们的输入被限定为 1-D array,这恰恰跟 OneHotEncoder() 要求输入 2-D array 相左。所以我们使用的时候要格外小心,否则就会出现上面array([[ 1.,  1.,  1.,  1.]])那样的错误

# 方法一: LabelEncoder() + OneHotEncoder()
a = LabelEncoder().fit_transform(testdata['pet'])
OneHotEncoder( sparse=False ).fit_transform(a.reshape(-1,1)) # 注意: 这里把 a 用 reshape 转换成 2-D array # 方法二: 直接用 LabelBinarizer() LabelBinarizer().fit_transform(testdata['pet'])

这两种方法得到的结果一致,都是

array([[ 1.,  0.,  0.],
      [ 0.,  1.,  0.],
      [ 0.,  1.,  0.],
      [ 0.,  0.,  1.]])

正因为LabelEncoderLabelBinarizer设计为只支持 1-D array,也使得它无法像上面 OneHotEncoder 那样批量接受多列输入,也就是说LabelEncoder().fit_transform(testdata[['pet', 'age']])会报错。

[scikit-learn] 特征二值化的更多相关文章

  1. 机器学习实战基础(十二):sklearn中的数据预处理和特征工程(五) 数据预处理 Preprocessing & Impute 之 处理分类特征:处理连续性特征 二值化与分段

    处理连续性特征 二值化与分段 sklearn.preprocessing.Binarizer根据阈值将数据二值化(将特征值设置为0或1),用于处理连续型变量.大于阈值的值映射为1,而小于或等于阈值的值 ...

  2. 机器学习入门-数值特征-进行二值化变化 1.Binarizer(进行数据的二值化操作)

    函数说明: 1. Binarizer(threshold=0.9) 将数据进行二值化,threshold表示大于0.9的数据为1,小于0.9的数据为0 对于一些数值型的特征:存在0还有其他的一些数 二 ...

  3. [转载+原创]Emgu CV on C# (四) —— Emgu CV on 全局固定阈值二值化

    重点介绍了全局二值化原理及数学实现,并利用emgucv方法编程实现. 一.理论概述(转载,如果懂图像处理,可以略过,仅用作科普,或者写文章凑字数)  1.概述 图像二值化是图像处理中的一项基本技术,也 ...

  4. [置顶] c#验证码识别、图片二值化、分割、分类、识别

    c# 验证码的识别主要分为预处理.分割.识别三个步骤 首先我从网站上下载验证码 处理结果如下: 1.图片预处理,即二值化图片 *就是将图像上的像素点的灰度值设置为0或255. 原理如下: 代码如下: ...

  5. c#图像灰度化、灰度反转、二值化

    图像灰度化:将彩色图像转化成为灰度图像的过程成为图像的灰度化处理.彩色图像中的每个像素的颜色有R.G.B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*25 ...

  6. 数据预处理:规范化(Normalize)和二值化(Binarize)

    注:本文是人工智能研究网的学习笔记 规范化(Normalization) Normalization: scaling individual to have unit norm 规范化是指,将单个的样 ...

  7. 灰度图像二值化-----c++实现

    前天闲着没事干,就写了写BMP图像处理,感觉大家还比较感兴趣..所以现在没事,继续更新..这次简单的写了灰度图像二值化..这是什么概念呢? 图像的二值化的基本原理 图像的二值化处理就是将图像上的点的灰 ...

  8. atitit.验证码识别step4--------图形二值化 灰度化

    atitit.验证码识别step4--------图形二值化 灰度化 1. 常见二值化的方法原理总结 1 1.1. 方法一:该方法非常简单,对RGB彩色图像灰度化以后,扫描图像的每个像素值,值小于12 ...

  9. opencv二值化的cv2.threshold函数

    (一)简单阈值 简单阈值当然是最简单,选取一个全局阈值,然后就把整幅图像分成了非黑即白的二值图像了.函数为cv2.threshold() 这个函数有四个参数,第一个原图像,第二个进行分类的阈值,第三个 ...

随机推荐

  1. [HNOI2009]双递增序列(动态规划,序列dp)

    感觉这个题还蛮难想的. 首先状态特别难想.设\(dp[i][j]\)表示前i个数,2序列的长度为j的情况下,2序列的最后一个数的最小值. 其中1序列为上一个数所在的序列,2序列为另外一个序列. 这样设 ...

  2. 在ubuntu下使用CMake及VSCode对LoRaMac-node代码进行编译调试

    准备工作 下载代码LoRaMac-node  阅读LoRaMac-node目录下的doc文件夹中的development-environment.md 开工 安装所需环境 CMaka( >= 3 ...

  3. Http请求传json数据中文乱码问题

    业务场景:调easyui的dialog打开一个弹窗,传参是用json封装的,而且有中文,然后在极速模式是正常的,在ie11测试发现中文出现乱码了 var params = JSON.stringify ...

  4. Java之戳中痛点 - (8)synchronized深度解析

    概览: 简介:作用.地位.不控制并发的影响 用法:对象锁和类锁 多线程访问同步方法的7种情况 性质:可重入.不可中断 原理:加解锁原理.可重入原理.可见性原理 缺陷:效率低.不够灵活.无法预判是否成功 ...

  5. C++11——智能指针

    1. 介绍 一般一个程序在内存中可以大体划分为三部分——静态内存(局部的static对象.类static数据成员以及所有定义在函数或者类之外的变量).栈内存(保存和定义在函数或者类内部的变量)和动态内 ...

  6. (六)分布式通信----MessagePack序列化

    1. .Net Core的序列化方式 1.1 json.Net 常用的工具包,如Newtonsoft.Json, 它是基于json格式的序列化和反序列化的组件 json.net 有以下优点: 侵入性: ...

  7. 海量数据搜索---demo展示百度、谷歌搜索引擎的实现

    在我们平常的生活工作中,百度.谷歌这些搜索网站已经成为了我们受教解惑的学校,俗话说得好,“有问题找度娘”.那么百度是如何在海量数据中找到自己需要的数据呢?为什么它搜索的速度如此之快?我们都知道是因为百 ...

  8. Spring Cloud开发人员如何解决服务冲突和实例乱窜?(IP实现方案)

    一.背景 在我上一篇文章<Spring Cloud开发人员如何解决服务冲突和实例乱窜?>中提到使用服务的元数据来实现隔离和路由,有朋友问到能不能直接通过IP来实现?本文就和大家一起来讨论一 ...

  9. hdu-6701 Make Rounddog Happy

    题目链接 Make Rounddog Happy Problem Description Rounddog always has an array a1,a2,⋯,an in his right po ...

  10. hdu 5961 传递(暴力搜索)

    我们称一个有向图G是传递的,当且仅当对任意三个不同的顶点a,,若G中有 一条边从a到b且有一条边从b到c ,则G中同样有一条边从a到c. 我们称图G是一个竞赛图,当且仅当它是一个有向图且它的基图是完全 ...