AirFlow常见问题汇总
airflow常见问题的排查记录如下:
1,airflow怎么批量unpause
大量的dag任务
普通少量任务可以通过命令airflow unpause dag_id
命令来启动,或者在web界面点击启动按钮实现,但是当任务过多的时候,一个个任务去启动就比较麻烦。其实dag信息是存储在数据库中的,可以通过批量修改数据库信息来达到批量启动dag任务的效果。假如是用mysql作为sql_alchemy_conn
,那么只需要登录airflow数据库,然后更新表dag的is_paused字段为0即可启动dag任务。
示例: update dag set is_paused = 0 where dag_id like "benchmark%";
2,airflow的scheduler进程在执行一个任务后就挂起进入假死状态
出现这个情况的一般原因是scheduler调度器生成了任务,但是无法发布出去。而日志中又没有什么错误信息。
可能原因是Borker连接依赖库没安装:
如果是redis作为broker则执行pip install apache‐airflow[redis]
如果是rabbitmq作为broker则执行pip install apache-airflow[rabbitmq]
还有要排查scheduler节点是否能正常访问rabbitmq。
3,当定义的dag
文件过多的时候,airflow的scheduler节点运行效率缓慢
airflow的scheduler默认是起两个线程,可以通过修改配置文件airflow.cfg
改进:
[scheduler]
# The scheduler can run multiple threads in parallel to schedule dags.
# This defines how many threads will run.
#默认是2这里改为100
max_threads = 100
4,airflow日志级别更改
$ vi airflow.cfg
[core]
#logging_level = INFO
logging_level = WARNING
NOTSET < DEBUG < INFO < WARNING < ERROR < CRITICAL
如果把log的级别设置为INFO, 那么小于INFO级别的日志都不输出, 大于等于INFO级别的日志都输出。也就是说,日志级别越高,打印的日志越不详细。默认日志级别为WARNING。
注意: 如果将logging_level
改为WARNING
或以上级别,则不仅仅是日志,命令行输出明细也会同样受到影响,也只会输出大于等于指定级别的信息,所以如果命令行输出信息不全且系统无错误日志输出,那么说明是日志级别过高导致的。
5,AirFlow: jinja2.exceptions.TemplateNotFound
这是由于airflow使用了jinja2作为模板引擎导致的一个陷阱,当使用bash命令的时候,尾部必须加一个空格:
- Described here : see below. You need to add a space after the script name in cases where you are directly calling a bash scripts in the
bash_command
attribute ofBashOperator
- this is because the Airflow tries to apply a Jinja template to it, which will fail.
t2 = BashOperator(
task_id='sleep',
bash_command="/home/batcher/test.sh", // This fails with `Jinja template not found` error
#bash_command="/home/batcher/test.sh ", // This works (has a space after)
dag=dag)
参考链接:
https://cwiki.apache.org/confluence/display/AIRFLOW/Common+Pitfalls
6,AirFlow: Task is not able to be run
任务执行一段时间后突然无法执行,后台worker日志显示如下提示:
[2018-05-25 17:22:05,068] {jobs.py:2508} INFO - Task is not able to be run
查看任务对应的执行日志:
cat /home/py/airflow-home/logs/testBashOperator/print_date/2018-05-25T00:00:00/6.log
...
[2018-05-25 17:22:05,067] {models.py:1190} INFO - Dependencies not met for <TaskInstance: testBashOperator.print_date 2018-05-25 00:00:00 [success]>,
dependency 'Task Instance State' FAILED: Task is in the 'success' state which is not a valid state for execution. The task must be cleared in order to be run.
根据错误提示,说明依赖任务状态失败,针对这种情况有两种解决办法:
使用airflow run运行task的时候指定忽略依赖task:
$ airflow run -A dag_id task_id execution_date
使用命令airflow clear dag_id进行任务清理:
$ airflow clear -u testBashOperator
7,CELERY: PRECONDITION_FAILED - inequivalent arg 'x-expires' for queue 'celery@xxxx.celery.pidbox' in vhost ''
在升级celery 4.x以后使用rabbitmq为broker运行任务抛出如下异常:
[2018-06-29 09:32:14,622: CRITICAL/MainProcess] Unrecoverable error: PreconditionFailed(406, "PRECONDITION_FAILED - inequivalent arg 'x-expires' for queue 'celery@PQ
SZ-L01395.celery.pidbox' in vhost '/': received the value '10000' of type 'signedint' but current is none", (50, 10), 'Queue.declare')
Traceback (most recent call last):
File "c:\programdata\anaconda3\lib\site-packages\celery\worker\worker.py", line 205, in start
self.blueprint.start(self)
.......
File "c:\programdata\anaconda3\lib\site-packages\amqp\channel.py", line 277, in _on_close
reply_code, reply_text, (class_id, method_id), ChannelError,
amqp.exceptions.PreconditionFailed: Queue.declare: (406) PRECONDITION_FAILED - inequivalent arg 'x-expires' for queue 'celery@PQSZ-L01395.celery.pidbox' in vhost '/'
: received the value '10000' of type 'signedint' but current is none
出现该错误的原因一般是因为rabbitmq的客户端和服务端参数不一致导致的,将其参数保持一致即可。
比如这里提示是x-expires 对应的celery中的配置是control_queue_expires。因此只需要在配置文件中加上control_queue_expires = None即可。
在celery 3.x中是没有这两项配置的,在4.x中必须保证这两项配置的一致性,不然就会抛出如上的异常。
我这里遇到的了两个rabbitmq的配置与celery配置的映射关系如下表:
rabbitmq | celery4.x |
---|---|
x-expires | control_queue_expires |
x-message-ttl | control_queue_ttl |
8,CELERY: The AMQP result backend is scheduled for deprecation in version 4.0 and removal in version v5.0.Please use RPC backend or a persistent backend
celery升级到4.x之后运行抛出如下异常:
/anaconda/anaconda3/lib/python3.6/site-packages/celery/backends/amqp.py:67: CPendingDeprecationWarning:
The AMQP result backend is scheduled for deprecation in version 4.0 and removal in version v5.0. Please use RPC backend or a persistent backend.
alternative='Please use RPC backend or a persistent backend.')
原因解析:
在celery 4.0中 rabbitmq 配置result_backbend方式变了:
以前是跟broker一样:
result_backend = 'amqp://guest:guest@localhost:5672//'
现在对应的是rpc配置:
result_backend = 'rpc://'
参考链接:
http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-event_queue_prefix
9,CELERY: ValueError('not enough values to unpack (expected 3, got 0)',)
windows上运行celery 4.x抛出以下错误:
[2018-07-02 10:54:17,516: ERROR/MainProcess] Task handler raised error: ValueError('not enough values to unpack (expected 3, got 0)',)
Traceback (most recent call last):
......
tasks, accept, hostname = _loc
ValueError: not enough values to unpack (expected 3, got 0)
celery 4.x暂时不支持windows平台,如果为了调试目的的话,可以通过替换celery的线程池实现以达到在windows平台上运行的目的:
pip install eventlet
celery -A <module> worker -l info -P eventlet
参考链接:
https://stackoverflow.com/questions/45744992/celery-raises-valueerror-not-enough-values-to-unpack
https://blog.csdn.net/qq_30242609/article/details/79047660
10,Airflow: ERROR - 'DisabledBackend' object has no attribute '_get_task_meta_for'
airflow运行中抛出以下异常:
Traceback (most recent call last):
File "/anaconda/anaconda3/lib/python3.6/site-packages/airflow/executors/celery_executor.py", line 83, in sync
......
return self._maybe_set_cache(self.backend.get_task_meta(self.id))
File "/anaconda/anaconda3/lib/python3.6/site-packages/celery/backends/base.py", line 307, in get_task_meta
meta = self._get_task_meta_for(task_id)
AttributeError: 'DisabledBackend' object has no attribute '_get_task_meta_for'
[2018-07-04 10:52:14,746] {celery_executor.py:101} ERROR - Error syncing the celery executor, ignoring it:
[2018-07-04 10:52:14,746] {celery_executor.py:102} ERROR - 'DisabledBackend' object has no attribute '_get_task_meta_for'
这种错误有两种可能原因:
- CELERY_RESULT_BACKEND属性没有配置或者配置错误;
- celery版本太低,比如airflow 1.9.0要使用celery4.x,所以检查celery版本,保持版本兼容;
11,airflow.exceptions.AirflowException dag_id could not be found xxxx. Either the dag did not exist or it failed to parse
查看worker日志 airflow-worker.err
airflow.exceptions.AirflowException: dag_id could not be found: bmhttp. Either the dag did not exist or it failed to parse.
[2018-07-31 17:37:34,191: ERROR/ForkPoolWorker-6] Task airflow.executors.celery_executor.execute_command[181c78d0-242c-4265-aabe-11d04887f44a] raised unexpected: AirflowException('Celery command failed',)
Traceback (most recent call last):
File "/anaconda/anaconda3/lib/python3.6/site-packages/airflow/executors/celery_executor.py", line 52, in execute_command
subprocess.check_call(command, shell=True)
File "/anaconda/anaconda3/lib/python3.6/subprocess.py", line 291, in check_call
raise CalledProcessError(retcode, cmd)
subprocess.CalledProcessError: Command 'airflow run bmhttp get_op1 2018-07-26T06:28:00 --local -sd /home/ignite/airflow/dags/BenchMark01.py' returned non-zero exit status 1.
通过异常日志中的Command
信息得知, 调度节点在生成任务消息的时候同时也指定了要执行的脚本的路径(通过ds参数指定),也就是说调度节点(scheduler)和工作节点(worker)相应的dag脚本文件必须置于相同的路径下面,不然就会出现以上错误。
参考链接:
https://stackoverflow.com/questions/43235130/airflow-dag-id-could-not-be-found
12,airlfow 的 REST API调用返回 Airflow 404 = lots of circles
出现这个错误的原因是因为URL中未提供origin
参数,这个参数用于重定向,例如调用airflow的/run
接口,可用示例如下所示:
AirFlow常见问题汇总的更多相关文章
- CentOS安装Oracle数据库详细介绍及常见问题汇总
一.安装前准备 1.软件硬件要求 操作系统:CentOS 6.4(32bit)Oracle数据库版本:Oracle 10g(10201_database_linux32.zip)最小内存:1G(检查命 ...
- SVN集中式版本控制器的安装、使用与常见问题汇总
SVN是Subversion的简称,是一个开放源代码的版本控制系统,它采用了分支管理系统,集中式版本控制器 官方网站:https://www.visualsvn.com/ 下载右边的服务器端,左边的客 ...
- H5项目常见问题汇总及解决方案
H5项目常见问题汇总及解决方案 H5 2015-12-06 10:15:33 发布 您的评价: 4.5 收藏 4收藏 H5项目常见问题及注意事项 Meta基础知识: H5页 ...
- Installshield脚本拷贝文件常见问题汇总
原文:Installshield脚本拷贝文件常见问题汇总 很多朋友经常来问:为什么我用CopyFile/XCopyFile函数拷贝文件无效?引起这种情况的原因有很多,今天略微总结了一下,欢迎各位朋友跟 ...
- MVC 网站部署常见问题汇总
一:TGIShare项目是一个MVC5的网站程序,部署在了IIS上,使用的Windows验证方式,并在本机设置了计划任务定时调用某个地址执行命令.问题汇总如下: 1.Window Server 200 ...
- J2EE进阶(十)SSH框架整合常见问题汇总(一)
SSH框架整合常见问题汇总(一) 前言 以下所列问题具有针对性,但是遇到同类型问题时均可按照此思路进行解决. HTTP Status 404 - No result defined for actio ...
- mysql进阶(十六)常见问题汇总
mysql进阶(十六)常见问题汇总 MySQL视图学习: http://www.itokit.com/2011/0908/67848.html 执行删除操作时,出现如下错误提示: 出现以上问题的原因是 ...
- 转---CentOS安装Oracle数据库详细介绍及常见问题汇总
一.安装前准备 1.软件硬件要求 操作系统:CentOS 6.4(32bit)Oracle数据库版本:Oracle 10g(10201_database_linux32.zip)最小内存:1G(检查命 ...
- (转)CloudStack 安装及使用过程中常见问题汇总
CloudStack 安装及使用过程中常见问题汇总 在做工程项目中对CloudStack 安装及使用过程中常见的几个问题及如何解决做一个总结. 1.Windows XP虚拟 ...
随机推荐
- Java学习|强引用,软引用,弱引用,幻想引用有什么区别?
在Java语言中,除了基本数据类型外,其他的都是指向各类对象的对象引用:Java中根据其生命周期的长短,将引用分为4类. 1 强引用 特点:我们平常典型编码Object obj = new Objec ...
- 使用Graphlab参加Kaggle比赛(2017-08-20 发布于知乎)
之前用学生证在graphlab上申了一年的graphlab使用权(华盛顿大学机器学习课程需要)然后今天突然想到完全可以用这个东东来参加kaggle. 下午参考了一篇教程,把notebook上面的写好了 ...
- Mac 查找粘贴板记录
0x00 大落 一件蛮坑爹的事情,复制了找了好久的内容合集,在回别人的信息的时候又进行了复制其他内容的操作,结果吾覆盖了的上一次复制的内容-- 于是开始找找 macOS 有没有粘贴板记录的东西,然后在 ...
- PL/SQL 调用JAVA使用UDP发送数据
步骤如下 1.直接在SQL命令中写入JAVA代码(用SYS帐号执行,不然权限等太麻烦) create or replace and resolve java source named udp as i ...
- K8S学习笔记之filebeat采集K8S微服务java堆栈多行日志
0x00 背景 K8S内运行Spring Cloud微服务,根据定制容器架构要求log文件不落地,log全部输出到std管道,由基于docker的filebeat去管道采集,然后发往Kafka或者ES ...
- k好数(动态规划)
问题描述 如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数.求L位K进制数中K好数的数目.例如K = 4,L = 2的时候,所有K好数为11.13.20.22 ...
- 记录一下vue transition 过渡各状态()
.slide-fade-enter{ opacity: 0; transform: translateX(100px); /*从哪里开始过渡:在过渡之前我就把位置定义在100px的位置,并 ...
- vi 多行注释与取消
多行注释 1.在命令行模式下,按 Shift + v 进入 VISUAL LINE 模式 2.选择要注释内容 3.按下 Ctrl + Shift + v 锁定块(XShell中) 或 按下 Ctrl ...
- Suring开发集成部署时问题记录
前言 开发时一定要用管理员模式打开VS或者VSCODE进行开发,同时不要在nuget上直接下载,要去github上下载源代码调试.第一方便调试,第二Surging迭代较快,nuget版本往往不是最新的 ...
- Docker学习总结(五)--迁移与备份
将容器保存为镜像 docker commit myNginx mynginx_i 镜像备份 docker save -o myNginx.tar myNginx_i 镜像恢复 docker load ...