题意

给定一个序列,多次询问区间\([l,r]\)中满足\(min(a[i],a[j])==gcd(a[i],a[j])\)的数对\((i,j)\)数。

分析

  • 其实就是求区间有倍数关系的数对数。
  • 由于序列是全排列,所有有倍数关系的数对数只有\(nlogn\)个,因此可以暴力求出所有数对,然后对询问离线,转化为二位偏序的问题,使用树状数组解决即可。
  • 树状数组求逆序对其实就是求\(i<j \&\& a[i]>a[j]\)的二维偏序关系,而在这题里求的就是\(l[i]<l[j] \&\& r[i]>r[j]\)的二维偏序关系,其中\(l[i],r[i]\)就是询问,所以将第一维排序,按树状数组求逆序数的方法计算即可。

代码

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+50;
int n,m,l,r,c[N],a[N],p[N],ans[N];
struct node{
int o,id,l,r;
bool operator<(const node& rhs)const{
if(r==rhs.r){
if(l==rhs.l){
//注意l和r都相同,询问点要放在后面...
return o<rhs.o;
}else{
return l>rhs.l;
}
}else{
return r<rhs.r;
}
}
};
vector<node> ns;
int lowbit(int x){
return x&(-x);
}
void add(int i,int x){
while(i<=n){
c[i]+=x;
i+=lowbit(i);
}
}
int sum(int i){
int ans=0;
while(i){
ans+=c[i];
i-=lowbit(i);
}
return ans;
}
int main(){
// freopen("in.txt","r",stdin);
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
p[a[i]]=i;
}
for(int i=1;i<=n;i++){
for(int j=i+i;j<=n;j+=i){
int a=p[i],b=p[j];
if(a>b){
swap(a,b);
}
ns.push_back({1,0,a,b});
}
}
for(int i=1;i<=m;i++){
scanf("%d%d",&l,&r);
ns.push_back(node{2,i,l,r});
}
sort(ns.begin(),ns.end());
int ad=0;
int siz=ns.size();
for(int i=0;i<siz;i++){
if(ns[i].o==1){
add(ns[i].l,1);
ad++;
}else{
ans[ns[i].id]=ad-sum(ns[i].l-1);
}
}
for(int i=1;i<=m;i++){
printf("%d\n",ans[i]);
}
return 0;
}

2019icpc徐州网络赛_I_query的更多相关文章

  1. 2019ICPC徐州网络赛 A.Who is better?——斐波那契博弈&&扩展中国剩余定理

    题意 有一堆石子,两个顶尖聪明的人玩游戏,先取者可以取走任意多个,但不能全取完,以后每人取的石子数不能超过上个人的两倍.石子的个数是通过模方程组给出的. 题目链接 分析 斐波那契博弈有结论:当且仅当石 ...

  2. 2019icpc徐州网络赛

    A Who is better? 题意 excrt+斐波那契博弈 分析 Java的BigInteger对象默认为null,不能直接比较. 代码 import java.math.BigInteger; ...

  3. 2018 ICPC 徐州网络赛

    2018 ICPC 徐州网络赛 A. Hard to prepare 题目描述:\(n\)个数围成一个环,每个数是\(0\)~\(2^k-1\),相邻两个数的同或值不为零,问方案数. solution ...

  4. 线段树+单调栈+前缀和--2019icpc南昌网络赛I

    线段树+单调栈+前缀和--2019icpc南昌网络赛I Alice has a magic array. She suggests that the value of a interval is eq ...

  5. 计蒜客 41391.query-二维偏序+树状数组(预处理出来满足情况的gcd) (The Preliminary Contest for ICPC Asia Xuzhou 2019 I.) 2019年徐州网络赛)

    query Given a permutation pp of length nn, you are asked to answer mm queries, each query can be rep ...

  6. 2019ICPC南京网络赛A题 The beautiful values of the palace(三维偏序)

    2019ICPC南京网络赛A题 The beautiful values of the palace https://nanti.jisuanke.com/t/41298 Here is a squa ...

  7. ICPC 2019 徐州网络赛

    ICPC 2019 徐州网络赛 比赛时间:2019.9.7 比赛链接:The Preliminary Contest for ICPC Asia Xuzhou 2019 赛后的经验总结 // 比赛完才 ...

  8. [徐州网络赛]Longest subsequence

    [徐州网络赛]Longest subsequence 可以分成两个部分,前面相同,然后下一个字符比对应位置上的大. 枚举这个位置 用序列自动机进行s字符串的下标转移 注意最后一个字符 #include ...

  9. 徐州网络赛B-BE,GE or NE【记忆化搜索】【博弈论】

    In a world where ordinary people cannot reach, a boy named "Koutarou" and a girl named &qu ...

随机推荐

  1. JDK容器类List,Set,Queue源码解读

    List,Set,Queue都是继承Collection接口的单列集合接口.List常用的实现主要有ArrayList,LinkedList,List中的数据是有序可重复的.Set常用的实现主要是Ha ...

  2. 【游记】NOIP2018复赛

    声明 我的游记是一个完整的体系,如果没有阅读过往届文章,阅读可能会受到障碍. ~~~上一篇游记的传送门~~~ 前言 参加完NOIP2018的初赛过后,我有点自信心爆棚,并比之前更重视了一点(也仅仅是一 ...

  3. .xxx.sh脚本无法启动,原来都是特殊字符搞的鬼?

    今天遇到个趣的问题,linux上springboot启动,连接达梦数据库报错. 解决思路: 1)是不是数据库本身有问题,客户端登录没问题. 2)排查是不是war包问题,本地连接数据库,没问题. 3)是 ...

  4. Go中的fmt几种输出的区别和格式化方式

    在日常使用fmt包的过程中,各种眼花缭乱的print是否让你莫名的不知所措呢,更让你茫然的是各种格式化的占位符..简直就是噩梦.今天就让我们来征服格式化输出,做一个会输出的Goer. fmt.Prin ...

  5. Go标准库--net/http学习

    Go中对网络的支持提供了标准库,net包提供了可移植的网络I/O接口,包括TCP/IP.UDP.域名解析和Unix域socket. http包提供了HTTP客户端和服务端的实现. 一般我们用http肯 ...

  6. Go基础语法学习

    Go语言基础 Go是一门类似C的编译型语言,但是它的编译速度非常快.这门语言的关键字总共也就二十五个,比英文字母还少一个,这对于我们的学习来说就简单了很多.先让我们看一眼这些关键字都长什么样: 下面列 ...

  7. Tunnel Warfare HDU - 1540 (线段树不同子树的合并)

    在抗日战争期间,华北平原广大地区进行了大规模的隧道战. 一般来说,通过隧道连接的村庄排成一列. 除了两端,每个村庄都与两个相邻的村庄直接相连. 入侵者经常对一些村庄发动袭击并摧毁其中的部分隧道. 八路 ...

  8. 从源码看Flask框架配置管理

    1 引言 Flask作为Python语言web开发的三大顶梁柱框架之一,对于配置的管理当然必不可少.一个应用从开发到测试到最后的产品发布,往往都需要多种不同的配置,例如是否开启调试模式.使用哪个数据库 ...

  9. linuxdeploy安装报错

    报错内容:checking installation path…fail(检查安装路径) 处理方法:安装在手机自带的存储空间中,则在路径开头加上${ENV_DIR},安装在sdcard中,加上${EX ...

  10. 十分钟入门流处理框架Flink --实时报表场景的应用

    随着业务的发展,数据量剧增,我们一些简单报表大盘类的任务,就不能简单的依赖于RDBMS了,而是依赖于数仓之类的大数据平台. 数仓有着巨量数据的存储能力,但是一般都存在一定数据延迟,所以要想完全依赖数数 ...