There are an equation. 
∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1000000007=?∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1000000007=? 
We define that (kj+1kj)=kj+1!kj!(kj+1−kj)!(kj+1kj)=kj+1!kj!(kj+1−kj)! . And (kj+1kj)=0(kj+1kj)=0 while kj+1<kjkj+1<kj. 
You have to get the answer for each nn and mm that given to you. 
For example,if n=1n=1,m=3m=3, 
When k1=0,k2=0,k3=0,(k2k1)(k3k2)=1k1=0,k2=0,k3=0,(k2k1)(k3k2)=1; 
Whenk1=0,k2=1,k3=0,(k2k1)(k3k2)=0k1=0,k2=1,k3=0,(k2k1)(k3k2)=0; 
Whenk1=1,k2=0,k3=0,(k2k1)(k3k2)=0k1=1,k2=0,k3=0,(k2k1)(k3k2)=0; 
Whenk1=1,k2=1,k3=0,(k2k1)(k3k2)=0k1=1,k2=1,k3=0,(k2k1)(k3k2)=0; 
Whenk1=0,k2=0,k3=1,(k2k1)(k3k2)=1k1=0,k2=0,k3=1,(k2k1)(k3k2)=1; 
Whenk1=0,k2=1,k3=1,(k2k1)(k3k2)=1k1=0,k2=1,k3=1,(k2k1)(k3k2)=1; 
Whenk1=1,k2=0,k3=1,(k2k1)(k3k2)=0k1=1,k2=0,k3=1,(k2k1)(k3k2)=0; 
Whenk1=1,k2=1,k3=1,(k2k1)(k3k2)=1k1=1,k2=1,k3=1,(k2k1)(k3k2)=1. 
So the answer is 4.

InputThe first line of the input contains the only integer TT,(1≤T≤10000)(1≤T≤10000) 
Then TT lines follow,the i-th line contains two integers nn,mm,(0≤n≤109,2≤m≤109)(0≤n≤109,2≤m≤109) 
OutputFor each nn and mm,output the answer in a single line.Sample Input

2
1 2
2 3

Sample Output

3
13 根据题意可以推出公式
∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1000000007= m^0 + m^1 + m^2 + ... + m^n = ( pow(m,n+1) - 1 / m - 1 ) % mod;
注意这个题目中是除法后取余,所以取余要用逆元取余
下面贴出两种可以用逆元取余的方法
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<stack>
#define mod 1000000007
using namespace std;
typedef long long ll;
ll qow(ll a,ll b) {
ll ans = ;
while( b ) {
if( b& ) {
ans = ans*a%mod;
}
a = a*a%mod;
b /= ;
}
return ans;
}
int main() {
ll T;
cin >> T;
while( T -- ) {
ll n,m;
cin >> n >> m;
ll sum = ,num=;
if( n == ) {
cout << sum << endl;
continue;
}
num = (qow(m,n+)-)*qow(m-,mod-)%mod; //费马小定理的求法
/*用qow(m-1,mod-2)对m-1进行逆元取余*/
cout << num << endl;
}
return ;
}
#include <cstdio>
#include <cmath>
#define MAX 100005
#define mod 1000000007 using namespace std; long long multi(long long a, long long b)//快速幂
{
long long ret = ;
while(b > )
{
if(b & )
ret = (ret * a) % mod;
a = (a * a) % mod;
b >>= ;
}
return ret;
} long long exgcd(long long a, long long b, long long &x, long long &y)//扩展欧几里得
{
if(!b)
{
x = ;
y = ;
return a;
}
long long d = exgcd(b, a % b, x, y); long long tmp = x;
x = y;
y = tmp - a / b * y; return d;
} int main()
{
int T;
scanf("%d", &T);
while(T--)
{
long long n, m, x, y;
scanf("%lld %lld", &n, &m);
long long mul = (multi(m, n + ) - ) % mod;
long long d = exgcd(m - , mod, x, y);//若这里mod的位置填写mod * (m - 1),最终计算时需要让x和mod都除以d
x *= mul;
x /= d;//因为m - 1和mod是互质的,这句可以去掉。
x = (x % mod + mod) % mod;//防止最终结果为负数
printf("%lld\n", x);
}
return ;
}
 

HDU 5793 A Boring Question 多校训练的更多相关文章

  1. HDU 5793 - A Boring Question

    HDU 5793 - A Boring Question题意: 计算 ( ∑(0≤K1,K2...Km≤n )∏(1≤j<m) C[Kj, Kj+1]  ) % 1000000007=? (C[ ...

  2. HDU 5793 A Boring Question (逆元+快速幂+费马小定理) ---2016杭电多校联合第六场

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  3. hdu 5793 A Boring Question(2016第六场多校)

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  4. HDU 5793 A Boring Question (找规律 : 快速幂+逆元)

    A Boring Question 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5793 Description Input The first l ...

  5. HDU 5793 A Boring Question (找规律 : 快速幂+乘法逆元)

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  6. HDU 5793 A Boring Question ——(找规律,快速幂 + 求逆元)

    参考博客:http://www.cnblogs.com/Sunshine-tcf/p/5737627.html. 说实话,官方博客的推导公式看不懂...只能按照别人一样打表找规律了...但是打表以后其 ...

  7. 数学--数论--Hdu 5793 A Boring Question (打表+逆元)

    There are an equation. ∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1000000007=? We define that (kj+1kj)=kj+1!kj! ...

  8. HDU 4920(杭电多校训练#5 1010 题) Matrix multiplication(不知道该挂个什么帽子。。。)

    题目地址:pid=4920">HDU 4920 对这个题简直无语到极点. . .竟然O(n^3)的复杂度能过....方法有三.. 1:进行输入优化和输出优化. . (前提是你的输入优化 ...

  9. 多校6 1001 HDU5793 A Boring Question (推公式 等比数列求和)

    题解:http://bestcoder.hdu.edu.cn/blog/ 多校6 HDU5793 A Boring Question // #pragma comment(linker, " ...

随机推荐

  1. win10+Anaconda3+CUDA9.0+CUDNN7.1+TensorFlow-gpu1.9+Pycharm

    想在win10上运行下YOLO的例子,要先配置环境,折腾了两天,终于好了,整理下自己觉得有用且正确的流程. win10+Anaconda3+CUDA9.0+CUDNN7.1+TensorFlow1.9 ...

  2. git开发流程

    典型的工作流程和做法是,由于你没有远程仓库的权限,你先在github通过fork,复制自己的一份远程仓库,然后通过clone你自己这个远程副本到本地,进行修改,修改后push到自己的githu远程副本 ...

  3. python基础之变量与数据类型

    变量在python中变量可以理解为在计算机内存中命名的一个存储空间,可以存储任意类型的数据.变量命名变量名可以使用英文.数字和_命名,且不能用数字开头使用赋值运算符等号“=”用来给变量赋值.变量赋值等 ...

  4. 让techempower帮你通讯服务框架的性能

    在编写服务应用框架的时候一般都需要进行性能测试,但自己测试毕竟资源受限所以很难做更高性能上的测试.其实GitHub上有一个项目可以让开发人员提交自己的框架服务代码然后进行一个标准测试:现在已经有上百个 ...

  5. NOIP 2018旅行题解

    从佳木斯回来刷一刷去年没A的题 题目描述 小 Y 是一个爱好旅行的 OIer.她来到 X 国,打算将各个城市都玩一遍. 小Y了解到, X国的 nn 个城市之间有 mm 条双向道路.每条双向道路连接两个 ...

  6. 论文阅读 | Falcon: Balancing Interactive Latency and Resolution Sensitivity for Scalable Linked Visualizations

    作者: Dominik Moritz, Bill Howe, Jeffrey Heer 发表于CHI 2019, 三位作者都来自于University of Washington Interactiv ...

  7. curl工具使用实例

    curl是一个命令行工具,其基于libcurl库,用于发送网络请求,获取并展示响应数据,下面来看curl的具体用法. 1.下载网页源码 curl命令直接接URL,用于下载指定URL的网页源码,并将其显 ...

  8. bottombar——Fragment

    首先是依赖   compile 'com.hjm:BottomTabBar:1.1.1' 下面是activity.xml文件 <RelativeLayout xmlns:android=&quo ...

  9. 通过Blazor使用C#开发SPA单页面应用程序(1)

    2019年9月23——25日 .NET Core 3.0即将在.NET Conf上发布! .NET Core的发布及成熟重燃了.net程序员的热情和希望,一些.net大咖也在积极的为推动.NET Co ...

  10. word2vec原理分析

    本文摘录整编了一些理论介绍,推导了word2vec中的数学原理,理论部分大量参考<word2vec中的数学原理详解>. 背景 语言模型 在统计自然语言处理中,语言模型指的是计算一个句子的概 ...