BZOJ2655 Calc

参考

题意:

  给定n,m,mod,问在对mod取模的背景下,从【1,m】中选出n个数相乘可以得到的总和为多少。

思路:

  首先可以发现dp方程 ,假定dp【m】【n】表示从【1 ~ m】中选出n个数乘积的和,

那么dp【m】【n】 = dp【m-1】【n】 + dp【m-1】【n-1】*m*n。

但是这道题的m有1e9那么大,不能dp完,不过我们可以发现,dp【x】【n】 是关于x的2*n多项式,

所以,我们只要先求出0~2*n的dp值,再用拉格朗日插值法算出dp【m】【n】的即可。

#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <iomanip>
#include <cstdlib>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <cctype>
#include <queue>
#include <cmath>
#include <list>
#include <map>
#include <set>
using namespace std;
//#pragma GCC optimize(3)
//#pragma comment(linker, "/STACK:102400000,102400000") //c++
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull; typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int ,pii> p3;
//priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFFLL; //
const ll nmos = 0x80000000LL; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3fLL; // const double PI=acos(-1.0); template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
// #define _DEBUG; //*//
#ifdef _DEBUG
freopen("input", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
/*-----------------------show time----------------------*/ const int maxn = ;
ll dp[maxn][maxn],x[maxn],y[maxn];
int m,n,mod; ll ksm (ll a,ll b){
ll res = ;
while(b>){
if(b&) res = (res * a)%mod;
a = (a * a)%mod;
b >>= ;
}
return res;
}
ll lagerange(int k){
ll res = ;
for(int i=; i<=*n; i++){
ll s1=,s2 = ; for(int j=; j<=*n; j++){
if(i==j)continue;
s1 = 1ll*(s1 * (k - x[j] + mod)%mod)%mod;
s2 = 1ll*(s2 * ((x[i] - x[j] + mod)%mod))%mod;
}
res = (res + 1ll*s1 * ksm(s2,mod-) % mod * y[i] % mod+mod)%mod;
}
return res;
}
int main(){ scanf("%d%d%d", &m, &n, &mod);
dp[][] = ;
for(int i=; i<=*n; i++){
dp[i][] = ;
for(int j=; j<=n; j++){
dp[i][j] = 1ll*dp[i-][j-] * i % mod * j + dp[i-][j];
dp[i][j] = dp[i][j]%mod;
}
} if(m <= * n){
printf("%lld\n", dp[m][n]);
return ;
} for(int i=; i<=*n; i++) x[i] = i,y[i] = dp[i][n]; printf("%lld\n",lagerange(m)); return ;
}

BZOJ2655

BZOJ2655 Calc - dp 拉格朗日插值法的更多相关文章

  1. BZOJ2655: calc(dp 拉格朗日插值)

    题意 题目链接 Sol 首先不难想到一个dp 设\(f[i][j]\)表示选了\(i\)个严格递增的数最大的数为\(j\)的方案数 转移的时候判断一下最后一个位置是否是\(j\) \[f[i][j] ...

  2. [BZOJ2655]calc(拉格朗日插值法+DP)

    2655: calc Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 428  Solved: 246[Submit][Status][Discuss] ...

  3. [国家集训队] calc(动规+拉格朗日插值法)

    题目 P4463 [国家集训队] calc 集训队的题目真是做不动呀\(\%>\_<\%\) 朴素方程 设\(f_{i,j}\)为前\(i\)个数值域\([1,j]\),且序列递增的总贡献 ...

  4. bzoj千题计划269:bzoj2655: calc (拉格朗日插值)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] * ...

  5. 【BZOJ】2655: calc 动态规划+拉格朗日插值

    [题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...

  6. bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法

    4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status ...

  7. Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法

    本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...

  8. 拉格朗日插值法——用Python进行数值计算

    插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关 ...

  9. CPP&MATLAB实现拉格朗日插值法

    开始学习MATLAB(R和Python先放一放...),老师推荐一本书,看完基础就是各种算法...首先是各种插值.先说拉格朗日插值法,这原理楼主完全不懂的,查的维基百科,好久才看懂.那里讲的很详细,这 ...

随机推荐

  1. SPFA队列优化

    spfa队列优化(用来求最短路) 实现方法: 1.存入图.可以使用链式前向星或者vocter. 2.开一个队列,先将开始的节点放入. 3.每次从队列中取出一个节点X,遍历与X相通的Y节点,查询比对   ...

  2. 【JDK】JDK源码分析-LinkedList

    概述 相较于 ArrayList,LinkedList 在平时使用少一些. LinkedList 内部是一个双向链表,并且实现了 List 接口和 Deque 接口,因此它也具有 List 的操作以及 ...

  3. 林大妈的JavaScript基础知识(三):JavaScript编程(3)原型

    在一般的编程语言中,我们使用继承来复用代码,做成良好的数据结构.而在JavaScript中,我们使用原型来实现以上的需求.由于JavaScript专注于对象而摒弃了类,我们要明白原型和继承的确是有差异 ...

  4. Kafka服务不可用(宕机)问题踩坑记

    背景 某线上日志收集服务报警,打开域名报502错误码. 收集服务由2台netty HA服务器组成,netty服务器将客户端投递来的protobuf日志解析并发送到kafka,打开其中一个应用的日志,发 ...

  5. Linux系统下减少LV(逻辑卷)容量

    查看文件系统现有 lv_test 容量,总计9.9G,已使用2% 命令 df -h 2 查看系统中的 PV 情况 命令:pvdisplay vg_test 下有两个 PV,分别为  /dev/sdb1 ...

  6. Git命令备忘录

    目录 前言 基本内容 开始之前 基础内容 远程仓库 分支管理 前言 Git在平时的开发中经常使用,整理Git使用全面的梳理. 基本内容 开始之前 请自行准备好Git工具以及配置好Git的基本配置 基础 ...

  7. 还在为垂直居中苦恼?CSS 布局利器 flexbox 轻轻松松帮你搞定

    传统的 CSS 布局方式是基于盒模型(它是根据盒子与父盒子以及兄弟盒子的关系确定大小和位置的算法),实现时依赖于 block, inline, table, position, float 这些属性, ...

  8. rtags——node.js+redis实现的标签管理模块

    引言在我们游览网页时,随处可见标签的身影: 进入个人微博主页,可以看到自己/他人的标签,微博系统会推送与你有相同标签的人 游览博文,大多数博文有标签标记,以说明文章主旨,方便搜索和查阅 网上购物,我们 ...

  9. (16)ASP.NET Core 通用主机(HostBuilder)

    1.前言 ASP.NET Core应用程序可以配置和启动主机(Host).主机负责应用程序启动和生命周期管理.通用主机用于无法处理HTTP请求的应用程序.通用主机的用途是将HTTP管道从Web主机AP ...

  10. Oracle Job定时任务详解、跨数据库数据同步

    业务需求,需要与A公司做数据对接,我们公司用的Oracle,A公司用的SQL Server数据库,如何跨数据库建立连接呢?这里使用的是DBLink,不会配置的请看我的另外一篇博客:https://ww ...