hdu 1007 Quoit Design 题解
题目大意
查询平面内最近点对的距离,输出距离的一半。
暴力做法
枚举每一个点对的距离直接判断,时间复杂度是 $ O(n^2) $,对于这题来说会超时。
那么我们考虑去优化这一个过程,我们在求距离的过程中其实有很多的计算是没有必要的,比如已经有一个暂时的最小值 $ d $,如果有 $ dis>d $,那么这个 $ dis $ 是没有贡献的,那么我们怎么除去这些不必要的答案呢?
我们可以考虑分治,假设已经求出了两个小区间 $ A , B $ 的最小值,那么合并的大区间 $ C $ 的最小值实际上就是在 $ d=n(A,B) $ 和A,B中的点对构成的距离中取最小值,那么我们可以用上之前的那个优化,对于大于d的我们不去选择,那么就可以缩小我们所需要的计算量,由于鸽巢原理只我们最多只要求36个点对,计算量很小。
然后我就开始敲代码了,一开始的代码是这样的
#include<bits/stdc++.h>
using namespace std;
const int maxn=100010;
const double INF=100000000.0;
struct node{
double x;
double y;
}a[maxn];
int n,tail1,tail2,tmp1[maxn],tmp2[maxn];
double ans;
bool cmp(node i,node j){
return i.x<j.x;
}
double dis(int i,int j){
double ans=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
return ans;
}
double clu(int l,int r){
if(l==r) return INF;
int mid=(l+r)>>1;
double d=min(clu(l,mid),clu(mid+1,r));
tail1=0;tail2=0;
for(int i=mid;i>=l&&a[mid].x-a[i].x<d;--i) tmp1[++tail1]=i;
for(int i=mid+1;i<=r&&a[i].x-a[mid].x<d;++i) tmp2[++tail2]=i;
for(int i=1;i<=tail1;++i){
for(int j=1;j<=tail2;++j){
double k=dis(tmp1[i],tmp2[j]);
if(d>k&&tmp1[i]!=tmp2[j]) d=k;
}
}
return d;
}
int main(){
scanf("%d",&n);
while(n){
memset(a,0,sizeof(a));
for(int i=1;i<=n;++i){
scanf("%lf %lf",&a[i].x,&a[i].y);
}
sort(a+1,a+1+n,cmp);
ans=clu(1,n)/2.0;
printf("%.2lf\n",ans);
scanf("%d",&n);
}
return 0;
}
然后时间超限,(雾
后面发现问题出在我只判断了x是否大于d,但对于y并没有去进行判断,这就导致时间复杂度还是很高,其实只要对y进行排序再剪枝便可AC
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=100010;
const double INF=100000000.0;
struct node{
double x;
double y;
}a[maxn];
int n,tail,tmp[maxn];
double ans;
bool cmp1(node i,node j){
return i.x<j.x;
}
bool cmp2(int i,int j){
return a[i].y<a[j].y;
}
double dis(int i,int j){
double ans=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
return ans;
}
double clu(int l,int r){
if(l==r) return INF;
int mid=(l+r)>>1;
double d=min(clu(l,mid),clu(mid+1,r));
tail=0;
for(int i=mid;i>=l&&a[mid].x-a[i].x<d;--i) tmp[++tail]=i;
for(int i=mid+1;i<=r&&a[i].x-a[mid].x<d;++i) tmp[++tail]=i;
sort(tmp+1,tmp+tail+1,cmp2);
for(int i=1;i<=tail;++i){
for(int j=i+1;j<=tail && a[tmp[j]].y-a[tmp[i]].y<d;++j){
double k=dis(tmp[i],tmp[j]);
if(d>k&&tmp[i]!=tmp[j]) d=k;
}
}
return d;
}
int main(){
scanf("%d",&n);
while(n){
memset(a,0,sizeof(a));
for(int i=1;i<=n;++i){
scanf("%lf %lf",&a[i].x,&a[i].y);
}
sort(a+1,a+1+n,cmp1);
ans=clu(1,n)/2.0;
printf("%.2lf\n",ans);
scanf("%d",&n);
}
return 0;
}
可以对照一下这两个代码,关键部分便在于
for(int i=1;i<=tail;++i){
for(int j=i+1;j<=tail && a[tmp[j]].y-a[tmp[i]].y<d;++j){
double k=dis(tmp[i],tmp[j]);
if(d>k&&tmp[i]!=tmp[j]) d=k;
}
}
值得注意的是
a[tmp[j]].y-a[tmp[i]].y<d
必须放在循环的判断条件里,而不可以拖进来,否则仍然超时,原因便在我们对y进行了排序,那么如果 $ a[tmp[j]].y-a[tmp[i]].y>=d $ 那么 $ tmp[k]].y-a[tmp[i]].y>=d , k>j $ 可以达到剪枝的效果。
完结撒花!
hdu 1007 Quoit Design 题解的更多相关文章
- HDU 1007 Quoit Design(经典最近点对问题)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...
- HDU 1007 Quoit Design(二分+浮点数精度控制)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- hdu 1007 Quoit Design (最近点对问题)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- HDU 1007 Quoit Design【计算几何/分治/最近点对】
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- hdu 1007 Quoit Design 分治求最近点对
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- hdu 1007 Quoit Design(分治)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1007 题意:给出n个点求最短的两点间距离除以2. 题解:简单的分治. 其实分治就和二分很像二分的写df ...
- HDU 1007 Quoit Design 平面内最近点对
http://acm.hdu.edu.cn/showproblem.php?pid=1007 上半年在人人上看到过这个题,当时就知道用分治但是没有仔细想... 今年多校又出了这个...于是学习了一下平 ...
- HDU 1007 Quoit Design
传送门 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Problem Des ...
- Hdoj 1007 Quoit Design 题解
Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...
随机推荐
- [android视频教程] 传智播客android开发视频教程
本套视频共有67集,是传智播客3G-Android就业班前8天的的课程量.本套视频教程是黎活明老师在2011年底对传智播客原来的Android核心基础课程精心重新录制的,比早期的Android课程内容 ...
- AutoCAD C#二次开发
https://www.cnblogs.com/gisoracle/archive/2012/02/19/2357925.html using System; using System.Collect ...
- 解决Sklearn中使用数据集MNIST无法获取的问题(WinError 10060)
今天在学习PCA的时候,使用mnist数据集遇到一个问题,代码是这样的: import numpy as np from sklearn.datasets import fetch_mldata mn ...
- 5G标准公布,你很快又要换手机了
通常,在4G网络环境下,下载一部1G的电影只需要30秒时间,对于经历过2G和3G网络的我们来说已经非常快了. 但是听说,5G环境中下载一部同样的电影,根本不是用秒来计算的,甚至有外媒说,5G的速率会是 ...
- 完美解决迅雷极速版强制升级到迅雷X
虽然迅雷已死,但是还是软件还是有点点用的.废话不好多说,直接上解决办法: 1. 找到桌面的迅雷图标,右键选择打开文件位置; 2. 根据路径找到: 相对路径:Thunder Network\Thunde ...
- 常用的python内置方法
all ( ) 循环参数,参数全为真就返回Ture any() 只要有一个 ...
- Linux面试题总结
1.简述Apache两种工作模式,以及它们之间的区别.答:(1)prefork MPM使用多个子进程,每个子进程只有一个线程来处理一个http请求,直到这个TCP连接被释放.root主进程在最初建立s ...
- input的onchange 和oninput事件
一个小的功能,也体现了了这几天写程序过程中的遇到的一些常发事件,准备有时间研究一下jQuery和原生js,问题的出现:使用jQuery获取到的节点到底是属于什么,有些事件 居然不能用,就如我今天用到的 ...
- 设计模式(C#)——03建造者模式
推荐阅读: 我的CSDN 我的博客园 QQ群:704621321 当一个复杂对象由一些子对象构成,并且子对象的变化会导致复杂对象的修改.这时我们需要提供一种"封装机制&qu ...
- Egret白鹭开发微信小游戏分享功能
今天给大家分享一下微信分享转发功能,话不多说,直接干 方法一: 1.在egret中打开Platfrom.ts文件,添加代码如下(当然,你也可以直接复制粘贴) /** * 平台数据接口. * 由于每款游 ...