spark-shell 中rdd常用方法
centos 7.2 spark 2.3.3 scala 2.11.11 java 1.8.0_202-ea
spark-shell中为scala语法格式
1.distinct 去重
val c = sc.parallerlize(List("Gnu","Cat","Rat","Dog","Gnu","Rat"),2) 初始化rdd,将数据均匀加载到2个partition中
c.distinct.collect
>>res1: Array[String]=Array(Dog,Gnu,Cat,Rat)
2. c.fisrt
first取RDD第一个Partition中的第一个记录
>>res2:String = Gnu
3.filter 过滤
val a = sc.parallelize(1 to 10,3)
val b = a.filter(_ % 2 ==0)
b.collect
>>res3:Array[Int] = Array(2,4,6,8,10)
4.filterByRange 返回指定范围内RDD记录,只能作用于排序RDD
val randRDD = sc.parallelize(List((2,"cat"),(6,"mouse"),(7,"cup),(3,"book"),(4,"tv"),(1,"screen"),(5,"heater")),3)
val sortedRDD = randRDD.sortByKey()
sortRDD.filterByRange(1,3).collect
>>res4:Array[(Int,String)] = Array((1,screen),(2,cat),(3,book))
5.foreach 遍历RDD内每个记录
val c = sc.parallelize(List("cat","dog","tiger","lion","gnu"),3)
c.foreach(x => println(x + "is ym"))
>>lion is ym
gnu is ym
cat is ym
tiger is ym
dog is ym
6.foreachPartition 遍历RDD内每一个Partition(每个Partition对应一个值)
val b = sc.parallelize(List(1,2,3,4,5,6,7,8),3)
b.foreachPartition(x => println(x.reduce(_ + _ )))
>> 6
15
15
7.fullOuterJoin
rdd1.fullOuterJoin[rdd2] 对两个PairRDD进行外连接 ,相同的key值的全部value组合,没有相同key的也保留,值用None填充
val pairRDD1 = sc.parallelize(List(("cat",2),("cat",5),("book",40)))
val pairRDD2 = sc.parallelize(List(("cat",2),("cup",5),("book",40)))
pairRDD1.fullOuterJoin(pairRDD2).collect
>>res5: Array[(String,(Option[Int],Option[Int]))] = Array((book,(Some(40),Some(40))), (cup,(None,Some(5))), (cat,(Some(2),Some(2))), (cat,(Some(5),Some(2)))
8.groupBy 根据给定的规则 来分组
val a = sc.parallelize(1 to 9,3)
a.groupBy(x => {if (x % 2 == 0) "even" else "odd" }).collect
>> res6:Array[(String,Seq[Int])] = Array((even,ArrayBuffer(2,4,6,8)),(odd,ArrayBuffer(1,3,5,7,9)))
groupBy中使用的方法函数写法还可写作:
def myfunc(a:Int):Int =
{
a % 2
}
a.groupBy(myfunc).collect
或
def myfunc(a:Int):Int=
{
a % 2
}
a.groupBy(x => myfunc(x),3).collect
a.groupBy(myfunc(_),1).collect
例 将groupBy的条件设置为 partition ,同时自定义数据分区的规则
package sometest
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext object SparkApplication{
def main(args:Array[String]){
val conf = new SparkConf()
val sc = new SparkContext(conf).setAppName("GroupPartition").setMaster("spark://master:7077")
val a = sc.parallelize(1 to 9 , 3)
val p = new MyPartitioner()
val b = a.groupBy((x:Int) => {x},p) //这里按照自定义分区规则P重新分区,然后groupBy
// b的形式为RDD[(Int,Iterable[Int])] 比如说 (1,CompactBuffer(1)) def myfunc(index:Int,iter:Iterator[(Int,Iterable[Int])]): Iterator[(Int,(Iterable[Int],Int))] = {
iter.map(a => (index,(a._2,a._1))) //a._2这种写法表示a中的第2个元素
}
val c = b.mapPartitionsWithIndex(myfunc)
println("This is Result for My :")
c.collect().foreach(println)
} 自定义分区规则
package sometest
import org.apache.spark.Partitioner /**
*自定义数据分区规则
**/
class MyPartitioner extends Partitioner{
def numPartitions:Int = 2 //设置分区数
def getPartition(key:Any):Int =
{
val code = key match
{
case null => 0
case key:Int => key % numPartitions //取余
case _ => key.hashCode % numPartitions
}
if(code < 0 ){ // 对 hashCode为负数的结果进行处理
code + numPartitions
}
else{
code
}
}
override def equals(other:Any):Boolean = // java标准的判断相等的函数, Spark内部比较两个RDD的分区是否一样时 会用到这个这个函数
{
other match
{
case h:MyPartitioner => h.numPartitions == numPartitions
case _ => false
}
}
}
打包成sparkAction.jar后 使用命令执行 spark-submit --class sometest.SparkApplication ~/sparkAction.jar
输出结果为:
This is Result for My :
(0,(CompactBuffer(4),4))
( 0,( CompactBuffer(6),6))
( 0,( CompactBuffer(8),8))
( 0,( CompactBuffer(2),2))
( 0,( CompactBuffer(1),1))
( 0,( CompactBuffer(3),3))
( 0,( CompactBuffer(7),7))
( 0,( CompactBuffer(9),9))
( 0,( CompactBuffer(5),5))
9.groupByKey [Pair]
类似于groupBy ,不过函数作用于key,而groupBy的函数是作用于每个数据的
val a = sc.parallelize(List("dog","tiger","lion","cat","spider","eagle"),2)
val b = a.keyBy(_.length)
b.groupByKey.collect 输出res11:Array[(Int,Iterable[String])] = Array((4,CompactBuffer(lion)),(6,CompactBuffer(spider)),(3,CompactBuffer(dog,cat)),(5,CompactBuffer(tiger,eagle))) 10 .histogram[Double] 计算数据直方图 (数值数据分布的精确图形表示) 计算给定数据中的最大值和最小值 ,然后将这个范围段平均分成n组,统计给定数据中每组的频数
一般来说,范围段为横轴 ,各组的统计个数为纵坐标 val a = sc.parallelize(List(1.1,1.2,1.3,2.0,2.1,7.4,7.5,7.6,8.8,9.0),3)
a.histogram(5) //将样本数据分成 5 组
res11: (Array[Double],Array[Long]) = (Array(1.1,2.68,4.26,5.84,7.42,9.0),Array(5,0,0,1,4)) 11 .intersection 返回两个RDD的交集(内连接)
val x=sc.parallelize(1 to 20)
val y =sc.parallelize(10 to 30)
val z = x.intersection(y)
z.collect
res74: Array[Int] = Array(16,17,18,10,19,11,20,12,13,14,15) 内连接
val a = sc.parallelize(List("dog","salmon","salmon","rat","elephant"),3)
val b = a.keyBy(_.length) //Array[(Int,String)]=Array((3,dog),(3,rat),(6,salmon),(6(salmon),(8,elephant))
val c = sc.parallelize(List("dog","cat","gnu","salmon","rabbit","turkey","wolf",bear","bee"),3) val d = c.keyBy(_.length)
b.join(d).collect
输出 res0: Array[(Int,(String,String))] = Array((6,(salmon,salmon)), (6,(salmon,rabbit)),(6,(salmon.turkey)), (6,(salmon,salmon)),
(6,(salmon,rabbit)), (6,(salmon,turkey)), (3,(dog,dog)), (3,(dog,cat)), (3,(dog,gnu)) ,(3,(dog,bee)), (3,(rat,dog)),(3,(rat,cat)), (3,(rat,gnu)), (,(rat,bee))) 12 .keys[Pair] 返回 key,value列表中的所有key val a = sc.parallelize(List((3,"dog"),(5,"tiger"),(4,"lion"),(3,"cat"),(7,"panther"),(5,"eagle")),2)
a.keys.collect
res2: Array[Int] = Array(3,5,4,3,7,5) 13 . lookup 查找指定记录
val a = sc.parallelize(List((3,"dog"),(5,"tiger"),(4,"lion"),(3,"cat"),,(7,"panther"),(5,"eagle")),2)
a.lookup(5)
res8: Seq[String] = WrappedArray(tiger,eagle) 14 .max 返回最大值
借用上述的a
a.max
res9: (Int,String) = (7,panther) val y =sc.parallelize(10 to 30)
y.max
res10: Int = 30
15 . mean 平均值
y.mean
res13: Double = 20.0 16 . persist,cache 设置RDD的存储级别
val c = sc.parallelize(List("Gnu","Cat","Rat","Dog","Gnu","Rat"),2)
c.getStorageLevel
res14: org.apache.spark.storage.StorageLevel = StorageLevel(1 replicas)
c.cache
res15: c.type = ParallelCollectionRDD[41] at parallelize at <console>:24
c.getStorageLevel
res16:org.apache.spark.storage.StorageLevel = StorageLevel(memory, deserialized, 1 replicas) 17 . sample 根据给定比例对数据进行采样
sample(withReplacement, fraction, seed)
withReplacement : 是否使用随机数替换
fraction : 对数据进行采样的比例
seed : 随机数生成器种子
val a = sc.parallelize(1 to 10000,3)
a.sample(false,0.1,0).count
res17:Long = 1032 a.sample(true,0.3,0).count
res18: Long = 3110 a.sample(true,0.3,13).count
res20 : Long = 2952 18 .saveAsTextFile保存到文本数据 (默认 文件系统是hdfs)
textFile读取文本数据 val a = sc.parallelize(11 to 19,3)
a.saveAsTextFile("test/tf") //实际上是保存到文件夹 test/tf ,由于并行化因子为3,一个Partition对应一个par-000x
val b = sc.textFile("test/tf")
b.collect
res4: Array[String] = Array(11,12,13,14,15,16,17,18,19) 19 .take 返回数据集中的前N个数据
val b = sc.parallelize(List("dog","cat","ape","salmon","gnu"),2)
b.take(2)
res5: Array[String] = Array(dog,cat) 20 .union,++ 对两个RDD数据进行并集 ,合并两个RDD
val a = sc.parallelize( 1 to 5,1)
val b = sc.parallelize(5 to 7,1)
(a++b).collect
Array[Int] = Array(1,2,3,4,5,5,6,7)
spark-shell 中rdd常用方法的更多相关文章
- 02、体验Spark shell下RDD编程
02.体验Spark shell下RDD编程 1.Spark RDD介绍 RDD是Resilient Distributed Dataset,中文翻译是弹性分布式数据集.该类是Spark是核心类成员之 ...
- 在Spark shell中基于HDFS文件系统进行wordcount交互式分析
Spark是一个分布式内存计算框架,可部署在YARN或者MESOS管理的分布式系统中(Fully Distributed),也可以以Pseudo Distributed方式部署在单个机器上面,还可以以 ...
- Spark SQL中 RDD 转换到 DataFrame (方法二)
强调它与方法一的区别:当DataFrame的数据结构不能够被提前定义.例如:(1)记录结构已经被编码成字符串 (2) 结构在文本文件中,可能需要为不同场景分别设计属性等以上情况出现适用于以下方法.1. ...
- 在Spark shell中基于Alluxio进行wordcount交互式分析
Spark是一个分布式内存计算框架,可部署在YARN或者MESOS管理的分布式系统中(Fully Distributed),也可以以Pseudo Distributed方式部署在单个机器上面,还可以以 ...
- Spark SQL中 RDD 转换到 DataFrame
1.people.txtsoyo8, 35小周, 30小华, 19soyo,882./** * Created by soyo on 17-10-10. * 利用反射机制推断RDD模式 */impor ...
- Spark Shell简单使用
基础 Spark的shell作为一个强大的交互式数据分析工具,提供了一个简单的方式学习API.它可以使用Scala(在Java虚拟机上运行现有的Java库的一个很好方式)或Python.在Spark目 ...
- [Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子
[Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子 sqlContext = HiveContext(sc) peopleDF = sqlContext. ...
- Spark中RDD的常用操作(Python)
弹性分布式数据集(RDD) Spark是以RDD概念为中心运行的.RDD是一个容错的.可以被并行操作的元素集合.创建一个RDD有两个方法:在你的驱动程序中并行化一个已经存在的集合:从外部存储系统中引用 ...
- 小白学习Spark系列三:RDD常用方法总结
上一节简单介绍了Spark的基本原理以及如何调用spark进行打包一个独立应用,那么这节我们来学习下在spark中如何编程,同样先抛出以下几个问题. Spark支持的数据集,如何理解? Spark编程 ...
随机推荐
- mysql数据库相关流程图/原理图
mysql数据库相关流程图/原理图 1.mysql主从复制原理图 mysql主从复制原理是大厂后端的高频面试题,了解mysql主从复制原理非常有必要. 主从复制原理,简言之,就三步曲,如下: 主数据库 ...
- RMAN 'Duplicate From Active Database' Feature in Oracle11g (Doc ID 452868.1)
RMAN 'Duplicate From Active Database' Feature in Oracle11g (Doc ID 452868.1) APPLIES TO: Oracle Data ...
- android binder 进程间通信机制5-Service注册和代理对象的获取
ServiceManager,其实也是一个Service,不过它的Server端实现并未使用Binder库的结构实现,而是直接打开binder/dev进行通信的,不具有普遍性. 下面以MediaSer ...
- Python函数名做参数,闭包,装饰器
简单讲解闭包的写法和应用,在这之前,先声明,你定义的任意一个函数都可以作为其他函数的参数.就像下面这段代码的参数func,接收的参数就是一个函数名,在函数体内部使用了func()调用执行函数. 请看下 ...
- Java程序猿想要月薪2万+必须必备哪些技术?
现在程序员是比较紧俏的一个岗位,其实可以写代码的人许多,但是为什么程序员还那么缺呢? 除了需求大以外,还有一个原因就是,实在合格的程序员确实比较少. 想要成为一个合格的程序员,咱们需求满意以下几点要求 ...
- Codeforces Round #599 (Div. 2) A. Maximum Square 水题
A. Maximum Square Ujan decided to make a new wooden roof for the house. He has
- JVM基础详解
JVM基础解析(一) Java里面有 JDK ,JRE, JVM ,这三者的关系是怎么样的呢? JDK是编译时环境: 整个Java的核心,包括了Java运行环境JRE.Java工具和Java基础类库 ...
- IT兄弟连 HTML5教程 HTML5和CSS3的关系
HTML5是第五版HTML的标准,CSS3则是第三版CSS,新增一些非常实用的选择器和样式属性,并且CSS3语言开发是朝着模块化发展的.以前的规范作为一个模块实在是太庞大而且比较复杂,所以,把它分解为 ...
- IT兄弟连 Java语法教程 流程控制语句 循环结构语句3
while循环 Java中的另外一种循环是while循环.while循环的语法格式如下: while(条件表达式){ 循环体; } 其中条件表达式定义了控制循环的条件,可以使任何有效的boolean表 ...
- 导出HTML5 Canvas图片并上传服务器功能
这篇文章主要介绍了导出HTML5 Canvas图片并上传服务器功能,文中通过实例代码给大家介绍了HTML5 Canvas转化成图片后上传服务器,代码简单易懂非常不错,具有一定的参考借鉴价值,需要的朋友 ...