本文首发于个人博客https://kezunlin.me/post/54e7a3d8/,欢迎阅读最新内容!

tutorial to compile and use pytorch on ubuntu 16.04

PyTorch for Python

install pytorch from anaconda

conda info --envs
conda activate py35 # newest version
# 1.1.0 pytorch/0.3.0 torchvision
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch # old version [NOT]
# 0.4.1 pytorch/0.2.1 torchvision
conda install pytorch=0.4.1 cuda90 -c pytorch

output

The following NEW packages will be INSTALLED:

  pytorch            pytorch/linux-64::pytorch-1.1.0-py3.5_cuda9.0.176_cudnn7.5.1_0
torchvision pytorch/linux-64::torchvision-0.3.0-py35_cu9.0.176_1

download from channel pytorch will cost much time!

下载pytorch/linux-64::pytorch-1.1.0-py3.5_cuda9.0.176_cudnn7.5.1_0速度非常慢!

install pytorch from tsinghua

add tsinghua pytorch channels

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
# for legacy win-64
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/peterjc123/
conda config --set show_channel_urls yes

使用anaconda官方pytorch源非常慢,用清华源代替。

see tsinghua anaconda

cat ~/.condarc

channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
- defaults

install pytorch from tsinghua

conda create --name torch python==3.7
conda activate torch conda install -y pytorch torchvision
conda install -y scikit-learn scikit-image pandas matplotlib pillow opencv

The following NEW packages will be INSTALLED:

  pytorch            anaconda/cloud/pytorch/linux-64::pytorch-1.1.0-py3.5_cuda9.0.176_cudnn7.5.1_0
torchvision anaconda/cloud/pytorch/linux-64::torchvision-0.3.0-py35_cu9.0.176_1

test pytorch

import torch
print(torch.__version__)
'1.1.0'

or

python -c 'import torch; print(torch.cuda.is_available())'
True

pre-trained models

pre-trained model saved to /home/kezunlin/.cache/torch/checkpoints/

Downloading: "https://download.pytorch.org/models/shufflenetv2_x0.5-f707e7126e.pth" to /home/kezunlin/.cache/torch/checkpoints/shufflenetv2_x0.5-f707e7126e.pth

PyTorch for C++

download LibTorch

download from LibTorch

compile from source

compile pytorch

# method 1
git clone --recursive https://github.com/pytorch/pytorch
cd pytorch # method 2, if you are updating an existing checkout
git clone https://github.com/pytorch/pytorch
cd pytorch
git submodule sync
git submodule update --init --recursive

check tags

git tag -l 

v0.4.0
v0.4.1
v1.0.0
v1.0.1
v1.0rc0
v1.0rc1
v1.1.0

now compile

git checkout v1.1.0

# method 1: offical build will generate lots of errors
#python setup.py install # method 2: normal make
mkdir build && cd build && cmake-gui ..

with configs

BUILD_PYTHON OFF

be sure to use stable version 1.1.0 from here instead of latest version 20190724 (unstable version 1.2.0)

because error will occurs when load models.

  • for 1.1.0:

    std::shared_ptr<torch::jit::script::Module> module = torch::jit::load("./model.pt");
  • for latest 1.2.0

    torch::jit::script::Module module = torch::jit::load("./model.pt");

configure output

******** Summary ********
General:
CMake version : 3.5.1
CMake command : /usr/bin/cmake
System : Linux
C++ compiler : /usr/bin/c++
C++ compiler id : GNU
C++ compiler version : 5.4.0
BLAS : MKL
CXX flags : -fvisibility-inlines-hidden -fopenmp -O2 -fPIC -Wno-narrowing -Wall -Wextra -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math
Build type : Release
Compile definitions : ONNX_ML=1;ONNX_NAMESPACE=onnx_torch;USE_GCC_ATOMICS=1;HAVE_MMAP=1;_FILE_OFFSET_BITS=64;HAVE_SHM_OPEN=1;HAVE_SHM_UNLINK=1;HAVE_MALLOC_USABLE_SIZE=1
CMAKE_PREFIX_PATH :
CMAKE_INSTALL_PREFIX : /usr/local TORCH_VERSION : 1.1.0
CAFFE2_VERSION : 1.1.0
BUILD_CAFFE2_MOBILE : ON
BUILD_ATEN_ONLY : OFF
BUILD_BINARY : OFF
BUILD_CUSTOM_PROTOBUF : ON
Link local protobuf : ON
BUILD_DOCS : OFF
BUILD_PYTHON : OFF
BUILD_CAFFE2_OPS : ON
BUILD_SHARED_LIBS : ON
BUILD_TEST : OFF
INTERN_BUILD_MOBILE :
USE_ASAN : OFF
USE_CUDA : ON
CUDA static link : OFF
USE_CUDNN : ON
CUDA version : 9.2
cuDNN version : 7.1.4
CUDA root directory : /usr/local/cuda
CUDA library : /usr/local/cuda/lib64/stubs/libcuda.so
cudart library : /usr/local/cuda/lib64/libcudart.so
cublas library : /usr/local/cuda/lib64/libcublas.so
cufft library : /usr/local/cuda/lib64/libcufft.so
curand library : /usr/local/cuda/lib64/libcurand.so
cuDNN library : /usr/local/cuda/lib64/libcudnn.so
nvrtc : /usr/local/cuda/lib64/libnvrtc.so
CUDA include path : /usr/local/cuda/include
NVCC executable : /usr/local/cuda/bin/nvcc
CUDA host compiler : /usr/bin/cc
USE_TENSORRT : OFF
USE_ROCM : OFF
USE_EIGEN_FOR_BLAS : ON
USE_FBGEMM : OFF
USE_FFMPEG : OFF
USE_GFLAGS : OFF
USE_GLOG : OFF
USE_LEVELDB : OFF
USE_LITE_PROTO : OFF
USE_LMDB : OFF
USE_METAL : OFF
USE_MKL : OFF
USE_MKLDNN : OFF
USE_NCCL : ON
USE_SYSTEM_NCCL : OFF
USE_NNPACK : ON
USE_NUMPY : ON
USE_OBSERVERS : ON
USE_OPENCL : OFF
USE_OPENCV : OFF
USE_OPENMP : ON
USE_TBB : OFF
USE_PROF : OFF
USE_QNNPACK : ON
USE_REDIS : OFF
USE_ROCKSDB : OFF
USE_ZMQ : OFF
USE_DISTRIBUTED : ON
USE_MPI : ON
USE_GLOO : ON
USE_GLOO_IBVERBS : OFF
NAMEDTENSOR_ENABLED : OFF
Public Dependencies : Threads::Threads
Private Dependencies : qnnpack;nnpack;cpuinfo;/usr/lib/x86_64-linux-gnu/libnuma.so;fp16;/usr/lib/openmpi/lib/libmpi_cxx.so;/usr/lib/openmpi/lib/libmpi.so;gloo;aten_op_header_gen;foxi_loader;rt;gcc_s;gcc;dl
Configuring done

install pytorch

now compile and install

make -j8
sudo make install

output

Install the project...
-- Install configuration: "Release"
-- Old export file "/usr/local/share/cmake/Caffe2/Caffe2Targets.cmake" will be replaced. Removing files [/usr/local/share/cmake/Caffe2/Caffe2Targets-release.cmake].
-- Set runtime path of "/usr/local/bin/protoc" to "$ORIGIN"
-- Old export file "/usr/local/share/cmake/Gloo/GlooTargets.cmake" will be replaced. Removing files [/usr/local/share/cmake/Gloo/GlooTargets-release.cmake].
-- Set runtime path of "/usr/local/lib/libonnxifi_dummy.so" to "$ORIGIN"
-- Set runtime path of "/usr/local/lib/libonnxifi.so" to "$ORIGIN"
-- Set runtime path of "/usr/local/lib/libfoxi_dummy.so" to "$ORIGIN"
-- Set runtime path of "/usr/local/lib/libfoxi.so" to "$ORIGIN"
-- Set runtime path of "/usr/local/lib/libc10.so" to "$ORIGIN"
-- Set runtime path of "/usr/local/lib/libc10_cuda.so" to "$ORIGIN:/usr/local/cuda/lib64"
-- Set runtime path of "/usr/local/lib/libthnvrtc.so" to "$ORIGIN:/usr/local/cuda/lib64/stubs:/usr/local/cuda/lib64"
-- Set runtime path of "/usr/local/lib/libtorch.so" to "$ORIGIN:/usr/local/cuda/lib64:/usr/lib/openmpi/lib"
-- Set runtime path of "/usr/local/lib/libcaffe2_detectron_ops_gpu.so" to "$ORIGIN:/usr/local/cuda/lib64"
-- Set runtime path of "/usr/local/lib/libcaffe2_observers.so" to "$ORIGIN:/usr/local/cuda/lib64"

pytorch 1.1.0

compile and install will cost more than 2 hours

lib install to /usr/local/lib/libtorch.so

cmake install to /usr/local/share/cmake/Torch

C++ example

load pytorch model in c++

see load pytorch model in c++

cpp

#include <torch/script.h> // One-stop header.

#include <iostream>
#include <memory> int main(int argc, const char* argv[]) {
if (argc != 2) {
std::cerr << "usage: example-app <path-to-exported-script-module>\n";
return -1;
} // Deserialize the ScriptModule from a file using torch::jit::load().
std::shared_ptr<torch::jit::script::Module> module = torch::jit::load(argv[1]); assert(module != nullptr);
std::cout << "ok\n"; // Create a vector of inputs.
std::vector<torch::jit::IValue> inputs;
inputs.push_back(torch::ones({1, 3, 224, 224})); // Execute the model and turn its output into a tensor.
at::Tensor output = module->forward(inputs).toTensor(); std::cout << output.slice(/*dim=*/1, /*start=*/0, /*end=*/5) << '\n';
}

CMakeLists.txt

cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(custom_ops) # /usr/local/share/cmake/Torch
find_package(Torch REQUIRED)
MESSAGE( [Main] " TORCH_INCLUDE_DIRS = ${TORCH_INCLUDE_DIRS}")
MESSAGE( [Main] " TORCH_LIBRARIES = ${TORCH_LIBRARIES}")
include_directories(${TORCH_INCLUDE_DIRS}) add_executable(example-app example-app.cpp)
target_link_libraries(example-app "${TORCH_LIBRARIES}")
set_property(TARGET example-app PROPERTY CXX_STANDARD 11)

output

Found torch: /usr/local/lib/libtorch.so
[Main] TORCH_INCLUDE_DIRS = /usr/local/include;/usr/local/include/torch/csrc/api/include
[Main] TORCH_LIBRARIES = torch;torch_library;/usr/local/lib/libc10.so;/usr/local/cuda/lib64/stubs/libcuda.so;/usr/local/cuda/lib64/libnvrtc.so;/usr/local/cuda/lib64/libnvToolsExt.so;/usr/local/cuda/lib64/libcudart.so;/usr/local/lib/libc10_cuda.so
[TOLOWER] ALGORITHM_TARGET = algorithm

make

mkdir build
cd build && cmake-gui ..
make -j8

set Torch_DIR to /home/kezunlin/program/libtorch/share/cmake/Torch

auto-set Torch_DIR to /usr/local/share/cmake/Torch

run

./example-app model.pt
-0.2698 -0.0381 0.4023 -0.3010 -0.0448

errors and solutions

compile errors with libtorch

@soumith

You might be building libtorch with a compiler that is incompatible with the compiler building your final app.

For example, you built libtorch with gcc 4.9.2 and your final app with gcc 5.1, and the C++ ABI between both of them is not the same, so you are seeing linker errors like these

@christianperone

if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU")
set(TORCH_CXX_FLAGS "-D_GLIBCXX_USE_CXX11_ABI=0")
endif()

Which forces GCC to use the old C++11 ABI.

@ smth

we have that flag set because we build with gcc 4.9.x, which only has the old ABI.

In GCC 5.1, the ABI for std::string was changed, and binaries compiling with gcc >= 5.1 are not ABI-compatible with binaries build with gcc < 5.1 (like pytorch) unless you set that flag.

resons and solutions

  • Reasons: ** LibTorch compiled with GCC-4.9.X (only has the old ABI), and binaries compiling with gcc >= 5.1 are not ABI-compatible**

  • Solution: compile pytorch from source instead of using LibTroch downloaded from the website.

runtime errors with pytorch

errors

/usr/local/lib/libopencv_imgcodecs.so.3.1.0: undefined reference to `TIFFReadRGBAStrip@LIBTIFF_4.0'

which means opencv link against libtiff 4.0.6

ldd check

ldd /usr/local/lib/libopencv_imgcodecs.so.3.1.0
linux-vdso.so.1 => (0x00007ffc92ffc000)
libopencv_imgproc.so.3.1 => /usr/local/lib/libopencv_imgproc.so.3.1 (0x00007f32afbca000)
libjpeg.so.8 => /usr/local/lib/libjpeg.so.8 (0x00007f32af948000)
libpng12.so.0 => /lib/x86_64-linux-gnu/libpng12.so.0 (0x00007f32af723000)
libtiff.so.5 => /usr/lib/x86_64-linux-gnu/libtiff.so.5 (0x00007f32af4ae000)

when compile opencv-3.1.0, cmake find /usr/lib/x86_64-linux-gnu/libtiff.so.5

locate libtiff

locate libtiff.so

/home/kezunlin/anaconda3/envs/py35/lib/libtiff.so
/home/kezunlin/anaconda3/envs/py35/lib/libtiff.so.5
/home/kezunlin/anaconda3/envs/py35/lib/libtiff.so.5.4.0
/home/kezunlin/anaconda3/lib/libtiff.so
/home/kezunlin/anaconda3/lib/libtiff.so.5
/home/kezunlin/anaconda3/lib/libtiff.so.5.4.0
/home/kezunlin/anaconda3/pkgs/libtiff-4.0.10-h2733197_2/lib/libtiff.so
/home/kezunlin/anaconda3/pkgs/libtiff-4.0.10-h2733197_2/lib/libtiff.so.5
/home/kezunlin/anaconda3/pkgs/libtiff-4.0.10-h2733197_2/lib/libtiff.so.5.4.0
/opt/MATLAB/R2016b/bin/glnxa64/libtiff.so.5
/opt/MATLAB/R2016b/bin/glnxa64/libtiff.so.5.0.5
/usr/lib/x86_64-linux-gnu/libtiff.so
/usr/lib/x86_64-linux-gnu/libtiff.so.5
/usr/lib/x86_64-linux-gnu/libtiff.so.5.2.4

It seems that my OpenCV was compiled against libtiff 4, but I have libtiff 5, how to solve this problem?

re-compile opencv-3.1.0 again, new errors occur

see here

CMake Error: The following variables are used in this project, but they are set to NOTFOUND.
Please set them or make sure they are set and tested correctly in the CMake files:
CUDA_nppi_LIBRARY (ADVANCED)
linked by target "opencv_cudev" in directory /home/kezunlin/program/opencv-3.1.0/modules/cudev
linked by target "opencv_cudev" in directory /home/kezunlin/program/opencv-3.1.0/modules/cudev
linked by target "opencv_test_cudev" in directory /home/kezunlin/program/opencv-3.1.0/modules/cudev/test

solutions:

WITH_CUDA OFF
WITH_VTK OFF
WITH_TIFF OFF
BUILD_PERF_TESTS OFF

for python2, use default /usr/bin/python2.7

for python3, NOT USE anaconda version

编译的过程中,尽量避免使用anaconda目录下的lib

install libwebp

sudo apt-get -y install libwebp-dev

Reference

History

  • 20190626: created.

Copyright

Ubuntu 16.04上源码编译和安装pytorch教程,并编写C++ Demo CMakeLists.txt | tutorial to compile and use pytorch on ubuntu 16.04的更多相关文章

  1. ubuntu 16.04上源码编译libjpeg-turbo和使用教程 | compile and use libjpeg-turbo on ubuntu 16.04

    本文首发于个人博客https://kezunlin.me/post/9f626e7a/,欢迎阅读! compile and use libjpeg-turbo on ubuntu 16.04 Seri ...

  2. ubuntu 16.04上源码编译和安装cgal并编写CMakeLists.txt | compile and install cgal on ubuntu 16.04

    本文首发于个人博客https://kezunlin.me/post/39ab7ed9/,欢迎阅读最新内容! compile and install cgal on ubuntu 16.04 Guide ...

  3. ubuntu 16.04上源码编译dlib教程 | compile dlib on ubuntu 16.04

    本文首发于个人博客https://kezunlin.me/post/c6ead512/,欢迎阅读! compile dlib on ubuntu 16.04 Series Part 1: compil ...

  4. ubuntu 16.04上源码编译glog和gflags 编写glog-config.cmake和gflags-config.cmake | compile glog and glags on ubuntu 16.04

    本文首发于个人博客https://kezunlin.me/post/977f5125/,欢迎阅读! compile glog and glags on ubuntu 16.04 Series comp ...

  5. Ubuntu 16.04上源码编译Poco并编写cmake文件 | guide to compile and install poco cpp library on ubuntu 16.04

    本文首发于个人博客https://kezunlin.me/post/281dd8cd/,欢迎阅读! guide to compile and install poco cpp library on u ...

  6. windows 10上源码编译libjpeg-turbo和使用教程 | compile and use libjpeg-turbo on windows 10

    本文首发于个人博客https://kezunlin.me/post/83828674/,欢迎阅读! compile and use libjpeg-turbo on windows 10 Series ...

  7. ubuntu 16.04上源码编译opengv | compile opengv on ubuntu 16.04

    本文首发于个人博客https://kezunlin.me/post/1e5d14ee/,欢迎阅读! compile opengv on ubuntu 16.04 Series compile open ...

  8. ubuntu 14.04上源码编译安装php7

    wget https://downloads.php.net/~ab/php-7.0.0alpha2.tar.bz2 //用winscp把下载好的文件上传到网站中 tar jxf php-7.0.0a ...

  9. CentOS 7上源码编译安装和配置LNMP Web+phpMyAdmin服务器环境

    CentOS 7上源码编译安装和配置LNMP Web+phpMyAdmin服务器环境 什么是LNMP? LNMP(别名LEMP)是指由Linux, Nginx, MySQL/MariaDB, PHP/ ...

随机推荐

  1. js获取当前日期,包括星期几

    function getCurrentDate() {       var myDate = new Date();       var year = myDate.getFullYear(); // ...

  2. SEH hook 的一种方法

    Windows内核分析索引目录:https://www.cnblogs.com/onetrainee/p/11675224.html 技术学习来源:火哥(QQ:471194425) 该方法的一些原理暂 ...

  3. 2018-8-10-win10-uwp-关联文件

    原文:2018-8-10-win10-uwp-关联文件 title author date CreateTime categories win10 uwp 关联文件 lindexi 2018-08-1 ...

  4. opencv::BackgroundSubtraction基本原理

    背景消除 BS算法 - 图像分割(GMM – 高斯混合模型) - 机器学习(KNN –K个最近邻) BackgroundSubtractor (父类) - BackgroundSubtractorMO ...

  5. GDAL读取Shp问题解决:Unable to open EPSG support file gcs.csv

    在GIS软件的开发中,经常用到开源库GDAL读取Shp数据,当shp数据中包含投影信息时,可能会遇到“Unable to open EPSG support file gcs.csv”错误提示,该错误 ...

  6. DYNAMICS 365发布所有时候报错:appmodule With Id = a7a513b1-c87d-e911-a83a-000d3a375321 Does Not Exist

    我是微软Dynamcis 365 & Power Platform方面的工程师罗勇,也是2015年7月到2018年6月连续三年Dynamics CRM/Business Solutions方面 ...

  7. Kali linux-信息收集-dmitry

    信息收集-dmitry DMitry(Deepmagic Information Gathering Tools 深度信息收集工具)是一个kali linux下用C语言写的工具.主要功能为端口扫描,w ...

  8. 获取本设备IP地址

    获取本设备(Android.PC)IP地址 public string GetLocalIP() { try { string HostName = Dns.GetHostName(); //得到主机 ...

  9. OSI模型级各层功能

    OSI(Open System Interconnection 即 开放系统互联)国际标准化组织(ISO)制定了OSI模型,该模型定义了不同计算机互联的标准,是设计和描述计算机网络通信的基本框架.OS ...

  10. postman---postman参数化

    我们在做接口测试的过程中,都会遇到同一个接口不同的数据,每次去一个个填写数据就太麻烦了,今天我们一起学习下如何通过postman进行参数化 参数化 参数化就是1个接口请求不同的数据,我们可以通过把请求 ...