<更新提示>

<第一次更新>


<正文>

The Counting Problem

Description

求 [L,R]内每个数码出现的次数。

Input Format

若干行,一行两个正整数 L 和 R。

最后一行 L=R=0,表示输入结束。

Output Format

若干行,对于每个询问做出回答,每行 10 个整数,依次表示 0 至 9 出现的次数。

输入的最后一行不属于询问,因此不必对此做出回答。

Sample Input

1 10
114 514
233 666
19260421 19260817
19190504 19890605
0 0

Sample Output

1 2 1 1 1 1 1 1 1 1
80 167 180 180 181 95 80 80 80 80
83 83 150 191 194 194 158 83 83 83
476 475 476 80 159 180 577 180 97 476
350124 1059618 450020 450020 450021 450117 450026 450020 440626 1050224

解析

考虑数位\(dp\),设\(f[i][j][k]\)代表长度为\(i\)的数中,最高位为\(j\),数码\(k\)的出现次数和。以长度作为阶段,可以轻松转移:

\[f[i][j][k]=\sum_{p=0}^9f[i-1][p][k]
\]

当然,对于\(j=k\)的情况,还要加上\(10^{i-1}\),作为最高位数码的贡献。

然后考虑对于一个具体的数值\(x\),求出\(1-x\)的答案。

首先我们可以利用预处理的\(dp\)数组快速得到长度小于\(x\)的长度的答案。然后考虑计算长度等于\(x\)的长度的答案。

从高位到低位枚举,如果当且位小于\(x\)的这一位的话,后面的数字可以随便填,直接累加答案即可,反之累加当前位贡献,继续考虑下一位。

\(Code:\)

#include <bits/stdc++.h>
using namespace std;
const int SIZE = 13;
int cnt,num[SIZE];
long long f[SIZE][10][10],ans[10][2];
inline long long quickpow(long long a,long long b)
{
long long res = 1;
for ( ; b ; a = a * a , b>>=1 )
if ( 1 & b ) res = res * a;
return res;
}
inline void Prepdp(void)
{
for (int i=0;i<=9;i++) f[1][i][i] = 1;
for (int i=2;i<=12;i++)
for (int j=0;j<=9;j++)
{
for (int k=0;k<=9;k++)
for (int l=0;l<=9;l++)
f[i][j][l] += f[i-1][k][l];
f[i][j][j] += quickpow( 10 , i-1 );
}
}
inline void solve(long long x,int id)
{
memset( num , 0 , sizeof num );
cnt = 0; long long y = x;
while ( x ) num[++cnt] = x % 10 , x /= 10;
for (int i=0;i<cnt;i++)
for (int j=1;j<=9;j++)
for (int k=0;k<=9;k++)
ans[k][id] += f[i][j][k];
for (int i=cnt;i>=1;i--)
{
for (int j=0;j<num[i];j++)
{
if ( i == cnt && j == 0 ) continue;
for (int k=0;k<=9;k++)
ans[k][id] += f[i][j][k];
}
ans[num[i]][id] += y % quickpow( 10 , i-1 ) + 1;
}
}
int main(void)
{
Prepdp();
long long a,b;
while ( scanf("%lld%lld",&a,&b) && a && b )
{
solve( a-1 , 0 ) , solve( b , 1 );
for (int i=0;i<=9;i++)
printf("%lld%c",ans[i][1]-ans[i][0]," \n"[i==9]);
memset( ans , 0 , sizeof ans );
}
return 0;
}

<后记>

『The Counting Problem 数位dp』的更多相关文章

  1. UVA - 1640 The Counting Problem (数位dp)

    题意:统计l-r中每种数字出现的次数 很明显的数位dp问题,虽然有更简洁的做法但某人已经习惯了数位dp的风格所以还是选择扬长避短吧(说白了就是菜啊) 从高位向低位走,设状态$(u,lim,ze)$表示 ...

  2. POJ2282:The Counting Problem(数位DP)

    Description Given two integers a and b, we write the numbers between a and b, inclusive, in a list. ...

  3. 『月之谜 数位dp』

    月之谜 Description 打败了Lord lsp 之后,由 于lqr 是一个心地善良的女孩 子,她想净化Lord lsp 黑化的 心,使他变回到原来那个天然 呆的lsp--在倒霉的光之英 雄ap ...

  4. hdu 5106 Bits Problem(数位dp)

    题目链接:hdu 5106 Bits Problem 题目大意:给定n和r,要求算出[0,r)之间全部n-onebit数的和. 解题思路:数位dp,一个ct表示个数,dp表示和,然后就剩下普通的数位d ...

  5. hiho1259 A Math Problem (数位dp)

    题目链接:http://hihocoder.com/problemset/problem/1259 题目大意:g(t)=(f(i)%k=t)的f(i)的个数 求所有的(0-k-1)的g(i)的异或总值 ...

  6. 哈尔滨工程大学ACM预热赛 G题 A hard problem(数位dp)

    链接:https://ac.nowcoder.com/acm/contest/554/G Now we have a function f(x): int f ( int x ) {     if ( ...

  7. nowcoder A hard problem /// 数位DP

    题目大意: 称一个数x的各个数位之和为f(x) 求区间L R之间 有多少个数x%f(x)==0 #include <bits/stdc++.h> using namespace std; ...

  8. 『最长等差数列 线性DP』

    最长等差数列(51nod 1055) Description N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括两项的不 ...

  9. 『快乐链覆盖 树形dp』

    快乐链覆盖 Description 给定一棵 n 个点的树,你需要找至多 k 条互不相交的路径,使得它们的长度之和最大 定义两条路径是相交的:当且仅当存在至少一个点,使得这个点在两条路径中都出现 定义 ...

随机推荐

  1. 近日LeetCode算法(记录)

    近日LeetCode算法 前言:最近刷了好多leetcode算法题,大家知道,程序=数据结构+算法,由此可见,算法真的是很重要的呢.闲话少谈,切入正题,来看看小编觉得有点意思的5题算法题吧... 1. ...

  2. SAP模块常用增强总结(转)

    转自:http://blog.sina.com.cn/s/blog_4298a2c80102x40c.html MM模块: 采购订单增强: BADI :ME_GUI_PO_CUST ME_PROCES ...

  3. [笔记] .net core WPF 程序,发布独立程序与单一执行程序

    如何发布独立可运行的,和只有一个文件的 .net core WPF 程序. 1 发布并打包 Step 1 在项目上右键,在菜单中选择发布,使用文件发布,选择独立部署模式,其它的条件,依照自己的情况设置 ...

  4. python IPy库

    Website: https://github.com/haypo/python-ipy/ 安装: easy_install IPy   >>> from IPy import IP ...

  5. ble蓝牙扫描几种方式

    有空再更新内容 方式一BluetoothAdapter层扫描回调 在高版本api已过时 方式二BluetoothLeScanner层扫描回调 android>= 5.0之后的版本推荐使用 方式三 ...

  6. FCC---Make a CSS Heartbeat using an Infinite Animation Count----超级好看的心跳,粉色的

    Here's one more continuous animation example with the animation-iteration-count property that uses t ...

  7. HTTP中的301、302、303、307、308

    结论 3XX开头的HTTP状态码都表示重定向的响应. 301.308是永久重定向:302.303.307是临时重定向. 301.302是http 1.0的内容,303.307.308是http1.1的 ...

  8. windows linux 通过SSH X11Forwrding 使用图形化界面

    有时候,我们需要在命令行中使用远程的GUI程序,这样我们就需要x11转发的来进行访问: Linux平台下不需要特别的配置,假如我们要远程的机器是centos机器,只要做如下配置即可: #vi /etc ...

  9. gevent实现协程

    gevent的好处:能够自动识别程序中的耗时操作,在耗时的时候自动切换到其他任务 # gevent的好处:能够自动识别程序中的耗时操作,在耗时的时候自动切换到其他任务 from gevent impo ...

  10. CodeForces - 1228C(质因数分解+贡献法)

    题意 https://vjudge.net/problem/CodeForces-1228C 首先先介绍一些涉及到的定义: 定义prime(x)表示x的质因子集合.举例来说,prime(140)={2 ...