CF1253E Antenna Coverage(DP)
本题难点在正确性证明。
令 \(f_i\) 表示 \([1,i]\) 被全部覆盖的最小花费。答案为 \(f_m\)。
首先发现,添加一个区间 \([0,0]\) 不会影响答案。所以 \(f_i\) 的初值可以设为 \(i\)。(这个很重要,没了就不对了!)
转移,如果 \(i\) 已经被某个初始区间完全覆盖了,那么可以从 \(f_{i-1}\) 转移来。
然后枚举每个区间,如果区间的右端点在 \(i\) 左边,计算把这个区间扩张到能恰好覆盖到 \(i\) 后的左端点。也就是从 \(f_{\max(0,l[j]-(i-r[j]))}+i-r[j]\) 转移来。
记下每个区间被扩张成什么样会炸状态,所以直接从初始的区间开始扩张。
时间复杂度 \(O(nm)\)。
开始证明正确性。
首先证明只用考虑被左边的区间覆盖,不需要考虑右边的。
其实被右边的区间覆盖也被考虑过了,不过转移的时候就直接跳过了这些点(在这个被扩张后的区间中)。所以不用管。
接下来证明直接从初始的区间开始扩张就是最优解。
如果需要在被扩张的区间的基础上继续扩张,说明这次扩张到的点 \(i\) 一定在上次扩张到的点 \(j\) 的右边,扩张到 \(i\) 后的区间的左端点一定跳过了 \(j\)。而我们最后要用到的是 \(i\) 的状态(因为需要继续扩张),所以中间这第一次扩张是没有必要的。
所以这种情况不可能发生。
接下来证明恰好扩张到能覆盖 \(i\) 就是最优解,也就是最优解不需要扩张到覆盖超过 \(i\) 一点点。
如果需要扩张更多,一定是因为可以覆盖左边的更多点,让左边的区间更短(不然覆盖到超过 \(i\) 的位置在 \(f_i\) 是完全没有必要的)。
但是由于添加了区间 \([0,0]\)(没错,它的作用就在这),一定有 \(f_{i+1}\le f_i+1\)(因为覆盖到 \(i\) 的区间可以再扩展一格)。
所以跳过区间后的转移点应该是越右越好。也就是不需要扩展到 \(i\) 右边。
于是这个就是对的了。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=100010;
#define MP make_pair
#define PB push_back
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline ll read(){
char ch=getchar();ll x=0,f=0;
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int n,m,x[maxn],s[maxn],f[maxn];
int main(){
n=read();m=read();
FOR(i,1,n) x[i]=read(),s[i]=read();
f[0]=0;
FOR(i,1,m){
f[i]=i;
bool flag=false;
FOR(j,1,n) if(x[j]+s[j]>=i && x[j]-s[j]<=i) flag=true;
if(flag) f[i]=f[i-1];
FOR(j,1,n) if(x[j]+s[j]<i) f[i]=min(f[i],f[max(0,2*x[j]-i-1)]+i-(x[j]+s[j]));
}
printf("%d\n",f[m]);
}
CF1253E Antenna Coverage(DP)的更多相关文章
- E. Antenna Coverage (dp)
传送门 题意: 在一个一维坐标上,有 n 个东西, 每个东西, 用 xi, si 表示 这个东西在 xi 位置上, 它能覆盖到的区间为 [ xi - si, xi + si ]: 然后, 你可以对任意 ...
- LightOJ 1033 Generating Palindromes(dp)
LightOJ 1033 Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...
- lightOJ 1047 Neighbor House (DP)
lightOJ 1047 Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...
- UVA11125 - Arrange Some Marbles(dp)
UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...
- 【POJ 3071】 Football(DP)
[POJ 3071] Football(DP) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4350 Accepted ...
- 初探动态规划(DP)
学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...
- Python项目在Jenkins中的自动化测试实践(语法检查、单元测试,coverage(代码覆盖率)、自动打包)
原始链接:http://blog.csdn.net/a464057216/article/details/52934077 requirments OS: Ubuntu 14.04+ Gitlab 8 ...
- Tour(dp)
Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...
- 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)
.navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...
随机推荐
- 搭建ES集群
服务版本选择 TEG的ctsdb当前最高版本采用的是es的6.4.3版本,为了日后与ctsdb衔接方便,部署开源版es时也采用该版本.6.4.3版本的es依赖的jdk版本要求在8u181以上,测试环境 ...
- TSC打印机防重码在线检测系统
条码标签作为产品的一个身份标识,被应用得越来越普及,但随着使用量的增大,在打印条码流水号的过程中,偶尔会出现打印重复号码的标签出现,这样对产品生产及管理过程中会产生极大的混乱,会收到严重的客诉及返工, ...
- 基于django的个人博客网站建立(五)
基于django的个人博客网站建立(五) 前言 网站效果可点击这里访问 之前鸽了两天,今天继续再写点 主要内容 今天加了个展示照片的功能,就叫他生活记录吧 先建表 class Record(model ...
- 洛谷 UVA1328 Period
洛谷 UVA1328 Period 洛谷传送门 题目描述 PDF 输入格式 无 输出格式 无 题意翻译 题意描述 对于给定字符串S的每个前缀,我们想知道它是否为周期串.也就还是说,它是否为某一字符串重 ...
- flutter---安装教程
下载java jdk https://www.oracle.com/technetwork/java/javase/downloads/jdk13-downloads-5672538.html 下载 ...
- 解决IDEA中的DashBoard 不显示端口号
第一步:找到.idea目录下的workspace.xml文件 第二步:找到下图位置 并添加红色部分代码 添加代码如下: <option name="configurationTypes ...
- IT兄弟连 HTML5教程 HTML5文字版面和编辑标签 HTML框架结构
使用HTML框架结构可以把一个浏览器窗口划分为若干个小窗口,每个窗口可以显示不同的URL网页,每个框架里的网页相互独立.这样不仅可以非常方便地在浏览器中同时浏览不同的页面效果,而且可以非常方便地完成导 ...
- 【pat】C++之刷题常用STL容器整理
1.vector 动态数组,方便的动态扩容,方便的变量初始化(int类型默认初始化为0,bool默认初始化为false),可以用来实现邻接表(结点数太多的图). 头文件 #include<vec ...
- python访问kafka
操作系统 : CentOS7.3.1611_x64 Python 版本 : 3.6.8 kafka 版本 : 2.3.1 本文记录python访问kafka的简单使用,是入门教程,高阶读者请直接忽略. ...
- 关于ASP.NET配置
字符串加密打开Vs的开发人员命令提示符 //加密web.config文件的连接字符串aspnet_regiis.exe -pef "connectionStrings" " ...