有关logistic(sigmoid)函数回归
在神经网络中,经常用到sigmoid函数,y = 1 / (1+e-x)
作为下一级神经元的激活函数,x也就是WX(下文,W以θ符号代替)矩阵计算结果。
这个函数通常用在进行分类,通常分为1或0的逻辑分类,所以又叫logistic回归。
常规常规情况下,我们使用的损失函数是 j(θ) = 1 / 2n * ∑(hθ(x) - y) , hθ(x) 也就是激活函数(或hypothesis函数),y是样本结果数据。在大部分情况下,这是通用的。以向量来看,空间点Hθ(x)和Y距离最小化。
但是,由于sigmoid函数是非线性的,所以用以上损失函数,求偏导后,得到的 j(θ)只能是局部最小值(左图),得不到真正的最小值。
因此,在logistic回归中,最优的损失函数,应该是:
y是指样本值。(也即是损失函数和y的关系,不再是直接减去y(样本目标值))
图像:
当y=0时,如果Hθ(x)越接近0,那么损失越小。也就是说,只要偏导数为0,反向传播时依然往最小值方向(而非局部最小值)
如果y=0,但是Hθ(x)不接近0,甚至于大于1,那么损失就非常巨大,那么可以造成反响传播时,修改原θ值就越大了。
连个曲线合并,就是J = y * log(x) + (1 - y) * log (1 - x),y的取值只能为0或1
整个损失函数简化后,得到:
(此函数,又叫交叉熵函数)
θ其实也即是权,或参数值。
总的来说,根据学习的结果类型(是0或1类型,还是数值类型),选择合适的激活函数,同时,也要有对应的损失函数,才能得到最佳效果。
有关logistic(sigmoid)函数回归的更多相关文章
- Logistic 回归(sigmoid函数,手机的评价,梯度上升,批处理梯度,随机梯度,从疝气病症预测病马的死亡率
(手机的颜色,大小,用户体验来加权统计总体的值)极大似然估计MLE 1.Logistic回归 Logistic regression (逻辑回归),是一种分类方法,用于二分类问题(即输出只有两种).如 ...
- 逻辑回归为什么用sigmoid函数
Logistic回归目的是从特征学习出一个0/1分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷. 因此,使用logistic函数(或称作sigmoid函数)将自 ...
- 逻辑回归和sigmoid函数分类
逻辑回归和sigmoid函数分类:容易欠拟合,分类精度不高,计算代价小,易于理解和实现 sigmoid函数与阶跃函数的区别在于:阶跃函数从0到1的跳跃在sigmoid函数中是一个逐渐的变化,而不是突变 ...
- Logstic回归采用sigmoid函数的原因
##Logstic回归采用sigmoid函数的原因(sigmoid函数能表示二项分布概率的原因) sigmoid函数: 
分类是机器学习的一个基本问题, 基本原则就是将某个待分类的事情根据其不同特征划分为两类. Email: 垃圾邮件/正常邮件 肿瘤: 良性/恶性 蔬菜: 有机/普通 对于分类问题, 其结果 y∈{0,1 ...
- 机器学习简要笔记(五)——Logistic Regression(逻辑回归)
1.Logistic回归的本质 逻辑回归是假设数据服从伯努利分布,通过极大似然函数的方法,运用梯度上升/下降法来求解参数,从而实现数据的二分类. 1.1.逻辑回归的基本假设 ①伯努利分布:以抛硬币为例 ...
随机推荐
- Weex项目快速打包
安装最新稳定版的Node.js 运行 cnpm install -g weex-toolkit 安装Weex 官方提供的 weex-toolkit 脚手架工具到全局环境中 运行 weex create ...
- Mac 安装node npm cnpm vue 以及卸载 node 和 npm 的方法 清空npm缓存的方法
S01 安装node(内含npm) 首先,到官网下载长期支持版,截止目前,最新的长期支持版本号是10.16.3 https://nodejs.org/zh-cn/download/ 下载完毕后,安装该 ...
- js匿名函数自执行的好处
我们知道,在创建一个函数时如果要用到变量来存取信息的话,要尽量使用局部变量. 因为一方面局部变量会随着函数的执行结束被销毁:另一方面在不执行函数的时候也不会创建这个局部变量,对节省空间资源有很大的好处 ...
- 异步处理ServletRequest引发的血案
我们的APP生产上出了一次比较严重的事故,许多用户投诉登录后能看到别人的信息,收到投诉后我们就开始查找问题,一般这样的问题都是线程安全引起的,所以查找原因的思路也是按线程安全的思路去查. 业务场景是这 ...
- Spring Security 自定义登录认证(二)
一.前言 本篇文章将讲述Spring Security自定义登录认证校验用户名.密码,自定义密码加密方式,以及在前后端分离的情况下认证失败或成功处理返回json格式数据 温馨小提示:Spring Se ...
- ssrf漏洞学习(PHP)
自己最近原本是想深入的学习一下关于xss.csrf的东西的,可是感觉这些东西需要有很好的js的基础来进行学习..还有感觉自己感觉也差不多该要学习内网渗透了..正好ssrf在内网这一块也是比较有用的.于 ...
- Java的动手动脑
动手动脑及课后实 仔细阅读示例: EnumTest.java,运行它,分析运行结果? public class EnumTest { public static void main(String[] ...
- Mybatis入门简版(补充)
一.Mybatis 中$与#的区别 #相当于对数据 加上 双引号,$相当于直接显示数据 1. #将传入的数据都当成一个字符串,会对自动传入的数据加一个双引号.如:order by #user_id#, ...
- What is neural network?
It is a powerful learning algoithm inspired by how the brain work. Example 1 - single neural network ...
- C#刷遍Leetcode面试题系列连载(4) No.633 - 平方数之和
上篇文章中一道数学问题 - 自除数,今天我们接着分析 LeetCode 中的另一道数学题吧~ 今天要给大家分析的面试题是 LeetCode 上第 633 号问题, Leetcode 633 - 平方数 ...