【bzoj5339】[TJOI2018]教科书般的亵渎(拉格朗日插值/第二类斯特林数)
题意:
一开始有很多怪兽,每个怪兽的血量在\(1\)到\(n\)之间且各不相同,\(n\leq 10^{13}\)。
然后有\(m\)种没有出现的血量,\(m\leq 50\)。
现在有个人可以使用魔法卡片,使用一张会使得所有的怪兽掉一点血,如果有怪兽死亡,则继续施展魔法。
这个人能够获得一定的分数,分数计算如下,每一次使用卡片前,假设一个怪兽血量为\(x\),那么获得\(x^k\)的分数。\(k\)为杀死所有怪兽需要的卡片数量。
求最后总的分数。
思路:
因为\(m\)很小,那么我们可以对每次施展卡片前获得的分数单独计算,最后加起来即可。
那么这个问题的本质就是要算:
\]
后面一部分显然可以直接计算,那么主要问题就在于计算前面的部分。
而幂级数的形式可以直接用第二类斯特林数展开,最后问题就变为了预处理第二类斯特林数,计算可以直接\(O(k)\)计算。
展开过程详见:传送门。
当然,这显然为一个与\(n\)有关的\(k+1\)次多项式,拉格朗日插值搞一搞就行。
当然,还有许多其它的方法,太菜了还不会...
斯特林数:
/*
* Author: heyuhhh
* Created Time: 2019/12/14 11:00:17
*/
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <iomanip>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 55, MOD = 1e9 + 7;
ll n;
int m;
int s[N][N], fac[N], c[N];
ll a[N];
ll qpow(ll a, ll b) {
a %= MOD;
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ans;
}
void init() {
s[0][0] = 1;
for(int i = 1; i < N; i++)
for(int j = 1; j <= i; j++)
s[i][j] = (1ll * s[i - 1][j] * j % MOD + s[i - 1][j - 1]) % MOD;
fac[0] = 1;
for(int i = 1; i < N; i++) fac[i] = 1ll * fac[i - 1] * i % MOD;
c[0] = 1;
}
int calc(ll n, int k) {
int res = 0;
for(int i = 1; i <= k + 1; i++) c[i] = 1ll * c[i - 1] * ((n + 2 - i) % MOD) % MOD * qpow(i, MOD - 2) % MOD;
for(int i = 1; i <= k; i++) {
res = (res + 1ll * fac[i] * s[k][i] % MOD * c[i + 1] % MOD) % MOD;
}
return res;
}
void run(){
cin >> n >> m;
for(int i = 1; i <= m; i++) cin >> a[i];
sort(a + 1, a + m + 1);
int ans = 0;
for(int k = 0; k <= m; k++) {
int res = calc(n - a[k], m + 1), tmp = 0;
for(int i = k + 1; i <= m; i++) {
tmp = (tmp + qpow(a[i] - a[k], m + 1)) % MOD;
}
res = (res + MOD - tmp) % MOD;
ans = (ans + res) % MOD;
}
cout << ans << '\n';
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
init();
int T; cin >> T;
while(T--) run();
return 0;
}
拉格朗日插值:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 55, MOD = 1e9 + 7;
int T;
ll a[N], fac[N];
ll qp(ll A, ll B) {
ll ans = 1;
while(B) {
if(B & 1) ans = ans * A % MOD;
A = A * A % MOD;
B >>= 1;
}
return ans ;
}
void add(ll &x, ll y, ll z) {
x += z * y % MOD;
x %= MOD;
if(x < 0) x += MOD;
}
void mul(ll &x, ll y) {
x *= y;
x %= MOD;
if(x < 0) x += MOD;
}
ll calc(ll n, ll m) {
ll ans = 0;
if(n <= m + 2) {
for(int i = 1; i <= n; i++) add(ans, qp(i, m), 1) ;
return ans ;
}
ll g = 1, y = 0;
for(int i = 1; i <= m + 2; i++) mul(g, n - i);
for(int i = 1; i <= m + 2; i++) {
ll t = qp(fac[i - 1] * fac[m + 2 - i] % MOD, MOD - 2) ;
if((m + 2 - i) & 1) t = -t;
add(y, qp(i, m), 1);
ll tmp = qp(n - i, MOD - 2);
mul(tmp, t * y % MOD * g % MOD) ;
add(ans, tmp, 1);
}
return ans;
}
int main() {
ios::sync_with_stdio(false); cin.tie(0);
fac[0] = 1;
for(int i = 1; i < N; i++) fac[i] = fac[i - 1] * i % MOD ;
cin >> T;
while(T--) {
int n, m;
cin >> n >> m;
for(int i = 1; i <= m; i++) cin >> a[i];
sort(a + 1, a + m + 1) ;
ll ans = 0;
for(int i = 0; i <= m; i++) {
add(ans, calc(n - a[i], m + 1), 1);
for(int j = i + 1; j <= m; j++)
add(ans, qp(a[j] - a[i], m + 1), -1) ;
}
cout << ans << '\n';
}
return 0;
}
【bzoj5339】[TJOI2018]教科书般的亵渎(拉格朗日插值/第二类斯特林数)的更多相关文章
- BZOJ.5339.[TJOI2018]教科书般的亵渎(拉格朗日插值) & 拉格朗日插值学习笔记
BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\ ...
- 洛谷P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)
题意 题目链接 Sol 打出暴力不难发现时间复杂度的瓶颈在于求\(\sum_{i = 1}^n i^k\) 老祖宗告诉我们,这东西是个\(k\)次多项式,插一插就行了 上面的是\(O(Tk^2)\)的 ...
- [BZOJ5339] [TJOI2018]教科书般的亵渎
题目链接 BZOJ题面. 洛谷题面. Solution 随便推一推,可以发现瓶颈在求\(\sum_{i=1}^n i^k\),关于这个可以看看拉格朗日插值法. 复杂度\(O(Tm^2)\). #inc ...
- 【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)
[BZOJ5339][TJOI2018]教科书般的亵渎(斯特林数) 题面 BZOJ 洛谷 题解 显然交亵渎的次数是\(m+1\). 那么这题的本质就是让你求\(\sum_{i=1}^n i^{m+1} ...
- 洛谷 P4593 [TJOI2018]教科书般的亵渎
洛谷 P4593 [TJOI2018]教科书般的亵渎 神仙伯努利数...网上一堆关于伯努利数的东西但是没有证明,所以只好记结论了? 题目本质要求\(\sum_{i=1}^{n}i^k\) 伯努利数,\ ...
- Luogu P4593 [TJOI2018]教科书般的亵渎
亵渎终于离开标准了,然而铺场快攻也变少了 给一个大力枚举(无任何性质)+艹出自然数幂和的方法,但是复杂度极限是\(O(k^4)\)的,不过跑的好快233 首先简单数学分析可以得出\(k=m+1\),因 ...
- 51nod1847 奇怪的数学题 (Min_25筛+第二类斯特林数)
link \(\sum_{i=1}^n\sum_{j=1}^n\mathrm{sgcd}(i,j)^k=\sum_{p=1}^ns(p)^k\sum_{i=1}^n\sum_{j=1}^n[\gcd( ...
- 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)
题意 题目链接:https://www.luogu.org/problem/P4827 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...
- 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...
随机推荐
- A.Sweet Problem
题目:甜蜜的问题 题意:你有三堆糖果:红色,绿色,蓝色 第一堆有r个糖果,第二堆有g个糖果,第三堆有b个糖果 每天都可以吃两个不同颜色的糖果,找出可以吃糖果的最大天数 分析:先排下序,如果最大堆大于等 ...
- Ceph 集群搭建
1.Ceph部署 1.1 Ceph 安装前准备,环境与拓扑图如下: 主机名 外网IP 内网IP 安装组件 磁盘块 c720181 172.22.69.84 192.168.20.181 ceph-de ...
- 【CentOS7】修改yum源
[CentOS7]修改yum源 转载:https://www.cnblogs.com/yangchongxing/p/10645944.html 1.备份源 # mv /etc/yum.repos.d ...
- 【Git】远程分支
[Git]远程分支 转载:https://www.cnblogs.com/yangchongxing/p/10239270.html 目录 ============================ 1 ...
- 信道估计之LS
在无线通信系统中,系统的性能主要受到无线信道的制约.基站和接收机之间的传播路径复杂多变,从简单的视距传输到受障碍物反射.折射.散射影响的传播.在无线传输环境中,接收信号会存在多径时延,时间选择性衰落和 ...
- hdu 1028 Ignatius and the Princess III (n的划分)
Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...
- UWP 从创建到发布流程一栏
# UWP的产品新建到发布流程一览 1,UWP开发特性 U: Universal(通用) W: Windows P: Plantform(平台) 运行在Windows10设备 比WPF更加多样化和完善 ...
- 松软科技Web课堂:重要->JavaScript 调试
错误总会发生,每当您写一些新的计算机代码时. JavaScript 调试 在没有调试器的情况下写 JavaScript 是有难度的. 您的代码中也许包含了语法错误,或者逻辑错误,这些都难以诊断. 通常 ...
- 如何利用PS将照片背景替换为白色
需求:将照片中的蓝底换成白底: 操作步骤: 1.打开图片,点击背景图层: 2.利用套索,选中除背景外的区域: 3.右键,反选: 4.填充为“白色”,确定,保存:
- 通过ADB获取Android手机信息
原文:https://blog.csdn.net/fasfaf454/article/details/51438743 1.获取手机系统信息( CPU,厂商名称等)adb shell "ca ...