Problem

Description

你有一个长度为 \(n\) 的串 \(S\),以及长度为 \(m\) 的串 \(T\)。

现给定一个数 \(k\) ,我们说 \(T\) 在 \(S\) 的位置 \(i\) 匹配上,当且仅当对于每一个 \(1\le a\le m\) ,都有一个位置 \(1\le b\le n\) 满足 \(|(i+a-1)-b|\le k\) ,且 \(S_b=T_a\) 。

请回答 \(T\) 在 \(S\) 中匹配上了多少个不同的位置。

Range

\(n,m,k\le2*10^5\)

Algorithm

多项式

Mentality

思路很妙的说。

先考虑 \(k=0\) 的情况。不难发现,当 \(T\) 与 \(S\) 匹配上时,\(T\) 中的每个字符与 \(S\) 中对应匹配字符的 位置的差 是相等的。

同时考虑在多项式乘法中,若许多对项最后会贡献在同一个位置上,那么它们的 次方的和 是相等的。

则考虑倒转原串,得到 \(T'\) 。

由于字符集大小仅仅为 \(4\) ,我们可以尝试一下分开考虑每种不同的字符。

对于当前字符 \(c\),考虑设 \(f_i=[S_i==c]*x^i\),\(g_i=[T'_i==c]*x^i\)。

则对于得到的 \(F(x)=f(x)*g(x)\) 而言,我们发现对于原串中的字符 \(S_i=T_j=c\) ,它们在 \(f\) 与 \(g\) 中对应项的乘积为 \(1\) ,且对位置 \(m-j+1+i\) 产生了 \(1\) 的贡献。

对于下一种字符 \(p\) 而言,若有 \(S_{i+1}=T_{j+1}=p\),则会对 \(m-(j+1)+1+(i+1)=m-j+1+i\) 有 \(1\) 的贡献。

换句话说,若有 \(T\) 在 \(S\) 的位置 \(i\) 匹配上了,那么必定有:\(T_1=S_i,T_2=S_{i+1}\dots T_m=S{i+m-1}\) ,也就必定会在对四种字符的卷积里对 \(m-j+1+i\) 这一项总共产生 \(m\) 的贡献。

将四次卷积的结果相加,则最后的答案为:系数为 \(m\) 的项的个数。

接着考虑 \(k>0\) 的情况,我们会发现和 \(k=0\) 的思路几乎一致,对于这个 \(k\) ,想想它的意义:我们在处理每种不同的字符的时候,若当前字符为 \(c\) ,对于每个为 \(c\) 的位置,它往左右两边 \(k\) 位也都是可以匹配的位置。

那我们直接将每个 \(c\) 的左右 \(k\) 位也都设成 \(c\) 不就好了嘛?

那么思路就很清晰了:四种字符分别统计,然后对于每种当前统计的字符,将左右 \(k\) 位设为同样的字符,得到 \(f,g\) 两个多项式,并将其卷积得到 \(F(x)=f(x)*g(x)\) ,将四个 \(F(x)\) 相加,统计系数为 \(m\) 的项数。

完毕。

Code

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define LL long long
#define go(x, i, v) for (int i = hd[x], v = to[i]; i; v = to[i = nx[i]])
#define inline __inline__ __attribute__((always_inline))
LL read() {
long long x = 0, w = 1;
char ch = getchar();
while (!isdigit(ch)) w = ch == '-' ? -1 : 1, ch = getchar();
while (isdigit(ch)) {
x = (x << 3) + (x << 1) + ch - '0';
ch = getchar();
}
return x * w;
}
const int Max_n = 2e5 + 5, mod = 998244353, G = 3;
int n, m, K, ans;
int f[Max_n << 2], g[Max_n << 2], A[Max_n << 2];
int lim, bit, rev[Max_n << 2];
char S[Max_n], T[Max_n];
inline void Convert(char &c) {
if (c == 'A') c = 'a';
if (c == 'C') c = 'b';
if (c == 'G') c = 'c';
if (c == 'T') c = 'd';
}
inline int ksm(int a, int b) {
int res = 1;
for (; b; b >>= 1, a = 1ll * a * a % mod)
if (b & 1) res = 1ll * res * a % mod;
return res;
}
namespace NTT {
inline void dft(int *f, bool t) {
for (int i = 0; i < lim; i++)
if (rev[i] > i) swap(f[i], f[rev[i]]);
for (int len = 1; len < lim; len <<= 1) {
int Wn = ksm(G, (mod - 1) / (len << 1));
if (t) Wn = ksm(Wn, mod - 2);
for (int i = 0; i < lim; i += len << 1) {
int Wnk = 1;
for (int k = i; k < i + len; k++, Wnk = 1ll * Wnk * Wn % mod) {
int x = f[k], y = 1ll * f[k + len] * Wnk % mod;
f[k] = (x + y) % mod, f[k + len] = (x - y + mod) % mod;
}
}
}
}
} // namespace NTT
inline void ntt(int *f, int *g) {
NTT::dft(f, 0), NTT::dft(g, 0);
for (int i = 0; i < lim; i++) f[i] = 1ll * f[i] * g[i] % mod;
NTT::dft(f, 1);
int Inv = ksm(lim, mod - 2);
for (int i = 0; i < lim; i++) f[i] = 1ll * f[i] * Inv % mod;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("D.in", "r", stdin);
freopen("D.out", "w", stdout);
#endif
n = read(), m = read(), K = read();
scanf(" %s", S + 1), scanf("%s", T + 1);
for (int i = 1; i <= n; i++) Convert(S[i]);
for (int i = 1; i <= m; i++) Convert(T[i]);
for (int i = 1; i <= m / 2; i++) swap(T[i], T[m - i + 1]);
bit = log2(n + m) + 1, lim = 1 << bit;
for (int i = 0; i < lim; i++)
rev[i] = rev[i >> 1] >> 1 | ((i & 1) << (bit - 1));
for (int k = 'a'; k <= 'd'; k++) {
memset(f, 0, sizeof(f)), memset(g, 0, sizeof(g));
for (int i = 1, cnt = 0; i <= n; i++) {
if (S[i] == k)
cnt = K, f[i] = 1;
else if (cnt)
cnt--, f[i] = 1;
}
for (int i = n, cnt = 0; i >= 1; i--) {
if (S[i] == k)
cnt = K, f[i] = 1;
else if (cnt)
cnt--, f[i] = 1;
}
for (int i = 1; i <= m; i++) g[i] = T[i] == k;
ntt(f, g);
for (int i = 0; i < lim; i++) A[i] += f[i];
}
for (int i = 0; i < lim; i++)
ans += A[i] == m;
cout << ans;
}

【CF528D】Fuzzy Search的更多相关文章

  1. 【CF528D】Fuzzy Search(FFT)

    [CF528D]Fuzzy Search(FFT) 题面 给定两个只含有\(A,T,G,C\)的\(DNA\)序列 定义一个字符\(c\)可以被匹配为:它对齐的字符,在距离\(K\)以内,存在一个字符 ...

  2. 【Codeforces528D】Fuzzy Search FFT

    D. Fuzzy Search time limit per test:3 seconds memory limit per test:256 megabytes input:standard inp ...

  3. 【HDU2222】Keywords Search AC自动机

    [HDU2222]Keywords Search Problem Description In the modern time, Search engine came into the life of ...

  4. 【计算机视觉】Selective Search for Object Recognition论文阅读3

    Selective Search for Object Recoginition surgewong@gmail.com http://blog.csdn.net/surgewong       在前 ...

  5. 【HDU2222】Keywords Search(AC自动机)

    Problem Description In the modern time, Search engine came into the life of everybody like Google, B ...

  6. 【LeetCode】74. Search a 2D Matrix

    Difficulty:medium  More:[目录]LeetCode Java实现 Description Write an efficient algorithm that searches f ...

  7. 【codeforces 528D】 Fuzzy Search

    http://codeforces.com/problemset/problem/528/D (题目链接) 题意 给定母串和模式串,字符集大小为${4}$,给定${k}$,模式串在某个位置匹配当且仅当 ...

  8. 【知识】location.search获取中文时候会被编码成一串字符

    [转码] 例如:case.html?id='这个是页面的标题' 当想要使用location.search获取?id='这个是页面的标题'的时候,包含的中文会被编码成一串字符串. 所以我们需要进行解码, ...

  9. 【leetcode】Word Search

    Word Search Given a 2D board and a word, find if the word exists in the grid. The word can be constr ...

随机推荐

  1. NSSearchPathForDirectoriesInDomains用法

    iPhone会为每一个应用程序生成一个私有目录,这个目录位于: /Users/sundfsun2009/Library/Application Support/iPhone Simulator/Use ...

  2. Javascript实现百度API

    百度地图JavaScript API是一套由JavaScript语言编写的应用程序接口,可帮助您在网站中构建功能丰富.交互性强的地图应用,支持PC端和移动端基于浏览器的地图应用开发,且支持HTML5特 ...

  3. 搞IT产品,请谨记Mobile First

    我们在哪儿? 作为一名企业IT的老鸟,发现一个比较有意思的事情,就是我们的企业IT产品,仍然投入大量的精力,在基于PC的WEB端的设计和交付上,而在APP上的,移动端的考虑,一直都是在PC搞完之后,再 ...

  4. DateTime格式转换部分介绍

    DateTime与字符串转换: DateTime()与转换为字符串主要依靠DateTime().ToString(string format) 函数,以我的理解,参数format大体分为单个字母和多个 ...

  5. 使用SQL计算宝宝每次吃奶的时间间隔

    需求:媳妇儿最近担心宝宝的吃奶时间不够规律,网上说是正常平均3小时喂奶一次,让我记录下每次的吃奶时间,分析下实际是否偏差很大,好在下次去医院复查时反馈给医生. 此外,还要注意有时候哭闹要吃奶,而实际只 ...

  6. Xcode 10 Error: Multiple commands produce

    目录 Xcode 9.4.1运行react-native 可以,但是在Xcode 10运行报错,报错信息如下: 解决方法 1. 选择 File > Project Settings (或者 Fi ...

  7. ACM-ICPC 2018 焦作赛区网络预赛J题 Participate in E-sports

    Jessie and Justin want to participate in e-sports. E-sports contain many games, but they don't know ...

  8. python 2.7编码问题

    问题引入 先看下面的代码,代码用utf8编码格式保存. print("中") 仅有一行代码,但是这个代码无论在ubuntu下还是win7下都会报错,错误信息类似是下面的内容: Sy ...

  9. Orleans 文档记录

    Orleans 官方文档:官方文档 http://dotnet.github.io/orleans/index.html Orleans 中文文档:中文文档 https://orleanscn.git ...

  10. Centos7 Openresty 开发环境

    首先要安装编译环境 yum group install "Development Tools" yum install pcre-devel openssl-devel gcc c ...