leetcode: 最长上升子序列
题目描述:
给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例:
输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
说明:
可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
你算法的时间复杂度应该为 O(n2) 。
进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?
思路分析:
思路一:根据题目的提示,利用动态规划,可以用O(N^2)的复杂度解这题。直接利用一个dp数组,用从后往前的方式存每个元素当前的最长上升序列,更新的状态转移方程就是dp[i] = max(dp[i], dp[j]+1),这里j的取值是从i+1到dp.size()。
思路二:由于题目的进阶要求是需要将复杂度降到O(NlogN),logn顺利成章会想到用二分查找来降低这个复杂度。实际上这部分的思想是维护一个tail数组,遍历nums数组时,每次都在tail数组中去找大于当前值的树,若有则替换,若没有则将当前值加入tail数组。进行替换的原因是在后续的查找中,可以找到更长的子序列,由于当前的tail中的元素更小了。而实际上,只有在添加新元素时会改变最长子序列的大小,因此这个tail数组的长度始终维持在当前最长子序列的长度。这里在查找数用到了二分查找,代码中直接调用了lower_bound()函数。关于这个函数的说明如下:
第一个first参数是一段连续空间的首地址,last是连续空间末端的地址,val是要查找的值。调用lower_bound()的前提是这段连续的空间里的元素是有序(递增)的。
然后lower_bound()的返回值是第一个大于等于val的值的地址,用这个地址减去first,得到的就是第一个大于等于val的值的下标
同时注意区分另一个upper_bound函数,这个返回值是第一个大于val值的地址。
代码:
思路一:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
if(nums.size()==)
return ;
vector<int>dp(nums.size(), );
for(int i=nums.size()-; i>=; i--)
{
for(int j=i+; j<nums.size(); j++)
{
if(nums[j] > nums[i])
{
dp[i] = max(dp[i], dp[j]+);
}
}
}
int max = ;
for(int i=; i<dp.size(); i++)
{
if(dp[i]>max)
max = dp[i];
}
return max;
}
};
思路二:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
if(nums.size()==)
return ;
vector<int> res;
for(int i=; i<nums.size(); i++)
{
auto iter = lower_bound(res.begin(), res.end(), nums[i]);
if(iter == res.end())
res.push_back(nums[i]);
else
*iter = nums[i];
}
return res.size();
}
};
leetcode: 最长上升子序列的更多相关文章
- leetcode最长递增子序列问题
题目描写叙述: 给定一个数组,删除最少的元素,保证剩下的元素是递增有序的. 分析: 题目的意思是删除最少的元素.保证剩下的元素是递增有序的,事实上换一种方式想,就是寻找最长的递增有序序列.解法有非常多 ...
- 子序列 sub sequence问题,例:最长公共子序列,[LeetCode] Distinct Subsequences(求子序列个数)
引言 子序列和子字符串或者连续子集的不同之处在于,子序列不需要是原序列上连续的值. 对于子序列的题目,大多数需要用到DP的思想,因此,状态转移是关键. 这里摘录两个常见子序列问题及其解法. 例题1, ...
- 【python】Leetcode每日一题-最长公共子序列
[python]Leetcode每日一题-最长公共子序列 [题目描述] 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度.如果不存在 公共子序列 ,返回 0 . ...
- [LeetCode每日一题]1143. 最长公共子序列
[LeetCode每日一题]1143. 最长公共子序列 问题 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度.如果不存在 公共子序列 ,返回 0 . 一个字符串 ...
- leetcode 300最长上升子序列
用递归DFS遍历所有组合肯定积分会超时,原因是有很多重复的操作,可以想象每次回溯后肯定会有重复操作.所以改用动态规划.建立一个vector<int>memo,初始化为1,memo[i]表示 ...
- Leetcode——300. 最长上升子序列
题目描述:题目链接 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101], ...
- Leetcode 673.最长递增子序列的个数
最长递增子序列的个数 给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7] 输出: 2 解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[ ...
- Leetcode 594.最长和谐子序列
最长和谐子序列 和谐数组是指一个数组里元素的最大值和最小值之间的差别正好是1. 现在,给定一个整数数组,你需要在所有可能的子序列中找到最长的和谐子序列的长度. 示例 1: 输入: [1,3,2,2,5 ...
- Leetcode 300.最长上升子序列
最长上升子序列 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的 ...
随机推荐
- android studio学习----构建编译
项目创建成功后会自动下载Gradle,这个过程特别慢,建议翻墙.下载的Gradle在Windows平台会默认在 C:\Documents and Settings\<用户名>.gradle ...
- HTTP协议中GET和POST
1. get 它用于获取信息,注意,他只是获取.查询数据,也就是说它不会修改服务器上的数据,从这点来讲,它是数据安全的,而稍后会提到的Post它是可以修改数据的,所以这也是两者差别之一了 2. pos ...
- XenServer Tools安装
右键Linux虚拟机,选择 Install XenServer Tools XenCenter 切换到 Console界面 执行如下命令安装: # mount /dev/xvdd /mnt # /mn ...
- 《Scala程序设计》暨Scala简介
JVM语言 JVM上的语言越来越多了,从前几年的groovy.Scala和Clojure,现在又听说一门Kotlin.对于前三种语言,groovy算是JVM平台上的动态脚本语言,可以类比Python: ...
- Linux 常用命令(根据自己的理解随时更新)
1. linux 目录解释系统启动必须: /boot:存放的启动 Linux 时使用的内核文件,包括连接文件以及镜像文件. /etc:存放所有的系统需要的配置文件和子目录列表,更改目录下的文件可能会导 ...
- error: stdio.h: 没有那个文件或目录
在64位系统中,编写一个C语言程序后,使用gcc进行编译时,出现了如下的错误: test.c:1:19: fatal error: stdio.h: 没有那个文件或目录 #include <s ...
- IDisposable 接口
提供一种用于释放非托管资源的机制. 地址:https://docs.microsoft.com/zh-cn/dotnet/api/system.idisposable?view=netframewor ...
- ARTS-week8
Algorithm 给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位数是按照 逆序 的方式存储的,并且它们的每个节点只能存储 一位 数字.如果,我们将这两个数相加起来,则会返回一个新的 ...
- ie6下标签定义的高失效,显示的高不受设定的height值影响
今天又碰到一个奇葩的ie6兼容bug,忍不住抱怨下这个后妈生的鬼东西!! 看图这个是在非ie6下的浏览器效果
- Go语言 - 结构体 | 方法
自定义类型和类型别名 自定义类型 在Go语言中有一些基本的数据类型,如string.整型.浮点型.布尔等数据类型, Go语言中可以使用type关键字来定义自定义类型. 自定义类型是定义了一个全新的类型 ...