NumPy 之 面向数组编程
import numpy as np
Using NumPy arrays enables you to express many kinds of data processing tasks as concise(简明的) array expressions(不用写循环就能用数组表达很多数据过程) that might otherwise require writing loops. This practice of replacing explicit loops whth array expressions is commonly referred to as vectorization(向量化操作). In general, vectorized array operations will offen be one or two(or more) orders of magnitude faster than their pure Python equivalents, with the biggest impact in any kind of numerical computations. Later, Appendix A, I explain broadcasting, a powerful method for vectorizing computations. -> 面向数组编程, 效率比纯Python高快很多.
As a simple example, suppose we wished to evaluate the function sqrt(x^2 + y^2) across a reqular grid of values. The np.meshgrid function takes two 1D arrays and produces two 2D matrices corresponding(对应的值对) to all paris of (x,y) in the two arrays.
# 1000 equaly spaced points
points = np.arange(-5, 5, 0.01)
xs, ys = np.meshgrid(points, points)
ys
array([[-5. , -5. , -5. , ..., -5. , -5. , -5. ],
[-4.99, -4.99, -4.99, ..., -4.99, -4.99, -4.99],
[-4.98, -4.98, -4.98, ..., -4.98, -4.98, -4.98],
...,
[ 4.97, 4.97, 4.97, ..., 4.97, 4.97, 4.97],
[ 4.98, 4.98, 4.98, ..., 4.98, 4.98, 4.98],
[ 4.99, 4.99, 4.99, ..., 4.99, 4.99, 4.99]])
Now, evaluating the function is a matter of writing the same expression you would wirte with two points:
z = np.sqrt(xs**2 + ys**2)
z
array([[7.07106781, 7.06400028, 7.05693985, ..., 7.04988652, 7.05693985,
7.06400028],
[7.06400028, 7.05692568, 7.04985815, ..., 7.04279774, 7.04985815,
7.05692568],
[7.05693985, 7.04985815, 7.04278354, ..., 7.03571603, 7.04278354,
7.04985815],
...,
[7.04988652, 7.04279774, 7.03571603, ..., 7.0286414 , 7.03571603,
7.04279774],
[7.05693985, 7.04985815, 7.04278354, ..., 7.03571603, 7.04278354,
7.04985815],
[7.06400028, 7.05692568, 7.04985815, ..., 7.04279774, 7.04985815,
7.05692568]])
As a preview of Chapter9, , I use matplotlib to create visualizations(可视化) of this two-dimensional array.
import matplotlib.pyplot as plt
plt.imshow(z, cmap=plt.cm.gray)
plt.colorbar()
plt.title("Image plot of $\sqrt{x^2 + y^2}$ for a grid of values")
plt.show()
<matplotlib.image.AxesImage at 0x23043ff1be0>
<matplotlib.colorbar.Colorbar at 0x230430a16d8>
Text(0.5, 1.0, 'Image plot of $\\sqrt{x^2 + y^2}$ for a grid of values')
Expressing Conditional Logic as Array Oprations
The numpy. where function is a vectorized of the ternary(三元的) expression x if condition else y. (np.where(cond T, F)的三元表达式) Suppose we had a boolean array and two arrays of values:
xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5])
yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5])
cond = np.array([True, False, True, True, False])
Suppose we wanted to take a value from xarr whenever the corresponding(对应的) value in cond is True, and otherwise take the value from yarr. A list comprehension(理解) doing this might look like:
"通过判断 c 的值为 True or False"
"zip(xarr, yarr, zarr)"
result = [(x if c else y) for x, y, c in zip(xarr, yarr, cond)]
result
'通过判断 c 的值为 True or False'
'zip(xarr, yarr, zarr)'
[1.1, 2.2, 1.3, 1.4, 2.5]
# cj test
for x, y, c in zip(xarr, yarr, cond):
x,y,c
(1.1, 2.1, True)
(1.2, 2.2, False)
(1.3, 2.3, True)
(1.4, 2.4, True)
(1.5, 2.5, False)
# cj test
list(zip(xarr, yarr, cond))
[(1.1, 2.1, True),
(1.2, 2.2, False),
(1.3, 2.3, True),
(1.4, 2.4, True),
(1.5, 2.5, False)]
This has multiplue problesms. First, it will not be very fast for large arrays(Because all the work is being done in interpreted Pyton(解释器执行慢) code). Second, it will not work with multidimensional arrays. With np.where you can write this very concisely(简明地). -> np.where()这种能弥补python解释器运行慢和能处理多维数组的不足.
result = np.where(cond, xarr, yarr)
result
array([1.1, 2.2, 1.3, 1.4, 2.5])
The second and the third arguments to np.where don't need to be arrays; one or both of them can be scalar. A typical use of where in data analysis is to produce a new array of values base on another array(通过一个多维数组,对其进行判断, 产生新数组, 通过三元表达式的写法). Suppose you had a matrix of randomly generated data and you wanted to replace all positive values with 2 and all negative values(负数值) with -2. This is very easy to do with np.where.
arr = np.random.randn(4,4)
arr
"逻辑判断 值大于0"
arr > 0
array([[ 0.16344426, -0.24675782, -0.99098667, 2.30182665],
[ 1.21964938, 1.6536566 , -0.06302591, -0.27577446],
[ 0.9991692 , 0.47264648, 0.51368592, -0.28743687],
[-0.62238625, 1.24407926, 0.46229014, -0.09544536]])
'逻辑判断 值大于0'
array([[ True, False, False, True],
[ True, True, False, False],
[ True, True, True, False],
[False, True, True, False]])
"np.where, 大于0的值设为2, 否则值设为-2, 产生了新的数组"
np.where(arr > 0, 2, -2)
'np.where, 大于0的值设为2, 否则值设为-2, 产生了新的数组'
array([[ 2, -2, -2, 2],
[ 2, 2, -2, -2],
[ 2, 2, 2, -2],
[-2, 2, 2, -2]])
You can combine scalars and arrays when using np.where. For example, I can replace all positive values in arr with the constant 2 like so:
# set only positive values to 2
np.where(arr > 0, 2, arr)
array([[ 2. , -0.24675782, -0.99098667, 2. ],
[ 2. , 2. , -0.06302591, -0.27577446],
[ 2. , 2. , 2. , -0.28743687],
[-0.62238625, 2. , 2. , -0.09544536]])
The arrays passed to np.where can be more than just equal-sized arrays or scalars. -> np.where还有很多强大的用法呢
Mathematical and Statistical Methods
A set of mathematical functions that compute statistics about an entire array or about the data along an axis are accessible(可理解为) as methods of the array class. You can use aggregations(聚合函数) like sum, mean, and std either by calling the array instance method of using the top-level NumPy function.
Here I generate some normally distribute random data and compute some aggregate statistics:
arr = np.random.randn(5,4)
arr
array([[-1.37805831, -1.12482245, -0.16684412, -0.76586049],
[ 0.53032371, -0.44266291, -2.34564781, -0.16721986],
[-0.85135248, -1.11541433, 1.50280171, -0.32380149],
[-0.40347092, 0.04702776, -0.97636849, 0.2564794 ],
[-0.44465538, 0.68593465, -1.45780821, 0.46746144]])
arr.mean()
np.mean(arr)
arr.sum()
-0.4236979305849384
-0.4236979305849384
-8.473958611698768
Functions like mean and sum take an opetional axis argument that complutes the statistic over the given axis, resulting in an array with one fewer dimension: -> 聚合函数是根据轴来计算的.
# cj test
arr = np.arange(1,7).reshape((2, 3))
arr
array([[1, 2, 3],
[4, 5, 6]])
"axis=1, 轴1表示列方向, 右边, 即按每行计算"
arr.mean(axis=1)
"axis=0, 轴0表示行方向, 下边, 即表示按每列计算"
arr.sum(axis=0)
'axis=1, 轴1表示列方向, 右边, 即按每行计算'
array([2., 5.])
'axis=0, 轴0表示行方向, 下边, 即表示按每列计算'
array([5, 7, 9])
Here, arr.mean(1) means "compute mean across columns (列方向,右边, 按照每行计算)" where arr.sum(0) means "compute sum down the rows.(行方向, 下边, 计算每列)"
Other methods like cumsum and cumprod do not aggregate, instead producing an array of the intermediate(中间的结果数组) results:
arr = np.array([0, 1, 2, 3, 4, 5, 6, 7])
"cumsum() 累积求和函数"
arr.cumsum()
'cumsum() 累积求和函数'
array([ 0, 1, 3, 6, 10, 15, 21, 28], dtype=int32)
In multidimensional arrays, accumulation(累积) like cumsum return an array of the same size, but with the partial aggregates(部分聚合函数) computed the indicated axis according to each lower dimentional slice:(根据轴来计算)
arr = np.array([[0,1,2], [3,4,5],[6,7,8]])
arr
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
"0轴, 行方向, 下方, 按列展示"
arr.cumsum(axis=0)
"1轴, 方向, 右边, 按行展示"
arr.cumprod(axis=1)
'0轴, 行方向, 下方, 按列展示'
array([[ 0, 1, 2],
[ 3, 5, 7],
[ 9, 12, 15]], dtype=int32)
'1轴, 方向, 右边, 按行展示'
array([[ 0, 0, 0],
[ 3, 12, 60],
[ 6, 42, 336]], dtype=int32)
See Table 4-5 for a full listing. We'll see many examples these methods in action in late chapters.
- sum, mean, median
- std, var
- max, min
- argmin, argmax
- cumsum, cumprod
- ...
Methods for Boolean arrays
Boolean values are coerced to(被规定为) 1 and 0 (False) in the preceding methods. Thus, sum is often used as a means of counting True values in a boolean array:
arr = np.random.randn(100)
"计算大于0的元素值有多少个"
(arr > 0).sum()
'计算大于0的元素值有多少个'
56
There are two addtional methods, any and all, usefull especially for boolean arrays. any(存在至少一个) tests whether one or more values in an array is True, while(而) all(所有) checks if every value is True.
bools = np.array([False, False, True, False])
"any: 存在至少一个即为真"
bools.any()
"all: 必须所有真才为真"
bools.all()
'any: 存在至少一个即为真'
True
'all: 必须所有真才为真'
False
Theres methods also work with non-boolean arrays, where non-zero elements evaluate to True.
Sorting
Like Python's built-in list type, NumPy arrays can be sorted in-place with the sort method:
arr = np.random.randn(6)
arr
array([-0.07751873, 1.96812178, 1.62236213, 0.35971909, 0.63935982,
0.75188034])
"arr.sort() 排序是原地的, 直接修改原数组, 没有返回值"
arr.sort()
arr
'arr.sort() 排序是原地的, 直接修改原数组, 没有返回值'
array([-0.07751873, 0.35971909, 0.63935982, 0.75188034, 1.62236213,
1.96812178])
You can sort each one-dimensional section(轴编号) of values in a multidimentional array in-place along an axis by passing the axis number to sort:
arr = np.random.randn(5,3)
arr
array([[ 1.19201961, -0.55352247, 0.59211779],
[-0.72344831, 0.48316786, -0.11050496],
[-0.77023054, 0.54681603, 0.49216649],
[ 0.20738566, -0.60705897, -1.37389538],
[ 0.46993764, -0.81503777, -1.31609675]])
"axis=1, 列方向, 右边, 按照每行"
arr.sort(1)
arr
'axis=1, 列方向, 右边, 按照每行'
array([[-0.55352247, 0.59211779, 1.19201961],
[-0.72344831, -0.11050496, 0.48316786],
[-0.77023054, 0.49216649, 0.54681603],
[-1.37389538, -0.60705897, 0.20738566],
[-1.31609675, -0.81503777, 0.46993764]])
The top-level method np.sort returns a sorted copy of an array instead of modifying the array in-place.(np.sort()返回的是一个深拷贝, 非原地修改) A quick-and-dirty way to compute the quantiles(分位数) of an array is to sort it and select the value at a particular rank:
large_arr = np.random.randn(1000)
"默认升序"
large_arr.sort()
" %5 quantile"
large_arr[int(0.05 * len(large_arr))]
'默认升序'
' %5 quantile'
-1.7445979520348824
For more details on using NumPy's sorting methods, and more advanced techniques like indirect sorts, see Appendix A. Several other kinds of data manipulations related to sorting of data can also be found in pandas.
Unique and Other set Logic
NumPy has some basic set opetation for one-dimensional ndarrays. A commonly used is np.unique, which returns the sorted unique values in an array:
names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
"数组去重"
np.unique(names)
'数组去重'
array(['Bob', 'Joe', 'Will'], dtype='<U4')
ints = np.array([3,3,3,2,2,1,1,4,4])
"数子去重"
np.unique(ints)
'数子去重'
array([1, 2, 3, 4])
Contrast(对比) np.unique with the pure Python alternative:
sorted(set(names))
['Bob', 'Joe', 'Will']
Another function, np.in1d, tests membership of the values in one array in another, returning a boolean array:
values = np.array([6, 0, 0, 3, 2, 5, 6])
"逐个判断数组的值, 是否在另一个array中"
np.in1d(values, [2,3,6])
'逐个判断数组的值, 是否在另一个array中'
array([ True, False, False, True, True, False, True])
See Table 4-6 for a listing of set functions in NumPy.
- unique(x) Compute the sorted, unique elements in x
- intersect1d(x, y) Compute the sorted, common elements in x and y
- union1d(x, y) Compute the sorted union of elements
- in1d(x, y) Compute a boolean array indicating whether each element of x in y
- ....
NumPy 之 面向数组编程的更多相关文章
- 《利用python进行数据分析》读书笔记--第四章 numpy基础:数组和矢量计算
http://www.cnblogs.com/batteryhp/p/5000104.html 第四章 Numpy基础:数组和矢量计算 第一部分:numpy的ndarray:一种多维数组对象 实话说, ...
- python数据分析---第04章 NumPy基础:数组和矢量计算
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具 ...
- 30天C#基础巩固------面向鸭子编程,关于string和File的练习
面向对象编程就是面向抽象的父类进行编程,具体的实现不用考虑,由子类决定.<经典的说法--面向鸭子编程> eg:鸭子的编程,<对于多态的理解> 我们都习惯把使用 ...
- spring AOP面向切面编程学习笔记
一.面向切面编程简介: 在调用某些类的方法时,要在方法执行前或后进行预处理或后处理:预处理或后处理的操作被封装在另一个类中.如图中,UserService类在执行addUser()或updateUse ...
- javascript设计模式学习之十七——程序设计原则与面向接口编程
一.编程设计原则 1)单一职责原则(SRP): 这里的职责是指“引起变化的原因”:单一职责原则体现为:一个对象(方法)只做一件事. 事实上,未必要在任何时候都一成不变地遵守原则,实际开发中,因为种种原 ...
- Spring AOP:面向切面编程,AspectJ,是基于spring 的xml文件的方法
导包等不在赘述: 建立一个接口:ArithmeticCalculator,没有实例化的方法: package com.atguigu.spring.aop.impl.panpan; public in ...
- Spring AOP:面向切面编程,AspectJ,是基于注解的方法
面向切面编程的术语: 切面(Aspect): 横切关注点(跨越应用程序多个模块的功能)被模块化的特殊对象 通知(Advice): 切面必须要完成的工作 目标(Target): 被通知的对象 代理(Pr ...
- iOS控制器瘦身-面向超类编程
今天写这篇文章的目的,是提供一种思路,来帮助大家解决控制器非常臃肿的问题,对控制器瘦身. 滴滴 老司机要开车了 如果手边有项目,不妨打开工程看一下你的控制器代码有多少行,是不是非常多?再看一下tabl ...
- Spring AOP: Spring之面向方面编程
Spring AOP: Spring之面向方面编程 面向方面编程 (AOP) 提供从另一个角度来考虑程序结构以完善面向对象编程(OOP). 面向对象将应用程序分解成 各个层次的对象,而AOP将程序分解 ...
随机推荐
- 一元n次方程为什么至多有n个实根
任意一个n次多项式都可以分解成n个一次多项式的乘积.例如,对于三次多项式来说,那就可以分成三个一次式的乘积,也就是说,三次方程最多有三个根. 需要注意的是,最少的话可能一个实根都没有,如\(f(x)= ...
- fping 命令说明
参数: -a 表示只在输出报告⾥列出当前存活的IP -d 解析主机名 -f 参数表示读⼊这个文件 -s 显示汇总信息 -g 指定⽹网段
- 大数据-使用Hive导入10G数据
前言 Hadoop和Hive的环境已经搭建起来了,开始导入数据进行测试.我的数据1G大概对应500W行,MySQL的查询500W行大概3.29秒,用hive同样的查询大概30秒.如果我们把数据增加到1 ...
- Azure容器监控部署(下)
上文已经基本完成了环境的搭建,prometheus可以以https的方式从node_exporter和cAdvisor上pull到数据,访问grafana时也可以以https的方式访问,安全性得到了一 ...
- react-native项目如何在xcode上打开ios项目
如何打开ios项目? 导入或者双击ios/thirtydays.xcodeproj
- ASP.NET Core消息队列RabbitMQ基础入门实战演练
一.课程介绍 人生苦短,我用.NET Core!消息队列RabbitMQ大家相比都不陌生,本次分享课程阿笨将给大家分享一下在一般项目中99%都会用到的消息队列MQ的一个实战业务运用场景.本次分享课程不 ...
- SyntaxError: Non-ASCII character ‘\xe5’ in file 的解决办法
在Python脚本中包含中文的时候,会遇到编码错误.例如: 出现SyntaxError: Non-ASCII character ‘\xe5’ in file 的错误. 解决办法:是因为编码有问题,所 ...
- QFIL软件烧写镜像
1.准备好需要烧写的文件 烧写之前,需要先准备好需要的文件,如下: 2.打开QFIL程序 接下来运行QFIL程序,如下: 3.选择端口 程序运行后,选择合适的端口,如下: 点击端口选择,然后选择Por ...
- 【转帖】威盛x86 AI处理器架构、性能公布:媲美Intel 32核心
威盛x86 AI处理器架构.性能公布:媲美Intel 32核心 https://www.cnbeta.com/articles/tech/920559.htm 除了Intel.AMD,宝岛台湾的威盛也 ...
- CF1190E Tokitsukaze and Explosion 二分、贪心、倍增、ST表
传送门 最小值最大考虑二分答案,不难发现当最小值\(mid\)确定之后,原点到所有直线的距离一定都是\(mid\)时才是最优的,也就是说这些直线一定都是\(x^2+y^2=mid^2\)的切线. 接下 ...