版本问题---keras和tensorflow的版本对应关系
keras和tensorflow的版本对应关系,可参考:
Framework | Env name (--env parameter) | Description | Docker Image | Packages and Nvidia Settings |
---|---|---|---|---|
TensorFlow 1.14 | tensorflow-1.14 | TensorFlow 1.14.0 + Keras 2.2.5 on Python 3.6. | floydhub/tensorflow | TensorFlow-1.14 |
TensorFlow 1.13 | tensorflow-1.13 | TensorFlow 1.13.0 + Keras 2.2.4 on Python 3.6. | floydhub/tensorflow | TensorFlow-1.13 |
TensorFlow 1.12 | tensorflow-1.12 | TensorFlow 1.12.0 + Keras 2.2.4 on Python 3.6. | floydhub/tensorflow | TensorFlow-1.12 |
tensorflow-1.12:py2 | TensorFlow 1.12.0 + Keras 2.2.4 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.11 | tensorflow-1.11 | TensorFlow 1.11.0 + Keras 2.2.4 on Python 3.6. | floydhub/tensorflow | TensorFlow-1.11 |
tensorflow-1.11:py2 | TensorFlow 1.11.0 + Keras 2.2.4 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.10 | tensorflow-1.10 | TensorFlow 1.10.0 + Keras 2.2.0 on Python 3.6. | floydhub/tensorflow | TensorFlow-1.10 |
tensorflow-1.10:py2 | TensorFlow 1.10.0 + Keras 2.2.0 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.9 | tensorflow-1.9 | TensorFlow 1.9.0 + Keras 2.2.0 on Python 3.6. | floydhub/tensorflow | TensorFlow-1.9 |
tensorflow-1.9:py2 | TensorFlow 1.9.0 + Keras 2.2.0 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.8 | tensorflow-1.8 | TensorFlow 1.8.0 + Keras 2.1.6 on Python 3.6. | floydhub/tensorflow | TensorFlow-1.8 |
tensorflow-1.8:py2 | TensorFlow 1.8.0 + Keras 2.1.6 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.7 | tensorflow-1.7 | TensorFlow 1.7.0 + Keras 2.1.6 on Python 3.6. | floydhub/tensorflow | TensorFlow-1.7 |
tensorflow-1.7:py2 | TensorFlow 1.7.0 + Keras 2.1.6 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.5 | tensorflow-1.5 | TensorFlow 1.5.0 + Keras 2.1.6 on Python 3.6. | floydhub/tensorflow | TensorFlow-1.5 |
tensorflow-1.5:py2 | TensorFlow 1.5.0 + Keras 2.1.6 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.4 | tensorflow-1.4 | TensorFlow 1.4.0 + Keras 2.0.8 on Python 3.6. | floydhub/tensorflow | |
tensorflow-1.4:py2 | TensorFlow 1.4.0 + Keras 2.0.8 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.3 | tensorflow-1.3 | TensorFlow 1.3.0 + Keras 2.0.6 on Python 3.6. | floydhub/tensorflow | |
tensorflow-1.3:py2 | TensorFlow 1.3.0 + Keras 2.0.6 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.2 | tensorflow-1.2 | TensorFlow 1.2.0 + Keras 2.0.6 on Python 3.5. | floydhub/tensorflow | |
tensorflow-1.2:py2 | TensorFlow 1.2.0 + Keras 2.0.6 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.1 | tensorflow | TensorFlow 1.1.0 + Keras 2.0.6 on Python 3.5. | floydhub/tensorflow | |
tensorflow:py2 | TensorFlow 1.1.0 + Keras 2.0.6 on Python 2. | floydhub/tensorflow | ||
TensorFlow 1.0 | tensorflow-1.0 | TensorFlow 1.0.0 + Keras 2.0.6 on Python 3.5. | floydhub/tensorflow | |
tensorflow-1.0:py2 | TensorFlow 1.0.0 + Keras 2.0.6 on Python 2. | floydhub/tensorflow | ||
TensorFlow 0.12 | tensorflow-0.12 | TensorFlow 0.12.1 + Keras 1.2.2 on Python 3.5. | floydhub/tensorflow | |
tensorflow-0.12:py2 | TensorFlow 0.12.1 + Keras 1.2.2 on Python 2. | floydhub/tensorflow | ||
PyTorch 1.1 | pytorch-1.1 | PyTorch 1.1.0 + fastai 1.0.57 on Python 3.6. | floydhub/pytorch | PyTorch-1.1 |
PyTorch 1.0 | pytorch-1.0 | PyTorch 1.0.0 + fastai 1.0.51 on Python 3.6. | floydhub/pytorch | PyTorch-1.0 |
pytorch-1.0:py2 | PyTorch 1.0.0 on Python 2. | floydhub/pytorch | ||
PyTorch 0.4 | pytorch-0.4 | PyTorch 0.4.1 on Python 3.6. | floydhub/pytorch | PyTorch-0.4 |
pytorch-0.4:py2 | PyTorch 0.4.1 on Python 2. | floydhub/pytorch | ||
PyTorch 0.3 | pytorch-0.3 | PyTorch 0.3.1 on Python 3.6. | floydhub/pytorch | PyTorch-0.3 |
pytorch-0.3:py2 | PyTorch 0.3.1 on Python 2. | floydhub/pytorch | ||
PyTorch 0.2 | pytorch-0.2 | PyTorch 0.2.0 on Python 3.5 | floydhub/pytorch | |
pytorch-0.2:py2 | PyTorch 0.2.0 on Python 2. | floydhub/pytorch | ||
PyTorch 0.1 | pytorch-0.1 | PyTorch 0.1.12 on Python 3. | floydhub/pytorch | |
pytorch-0.1:py2 | PyTorch 0.1.12 on Python 2. | floydhub/pytorch | ||
Theano 0.9 | theano-0.9 | Theano rel-0.8.2 + Keras 2.0.3 on Python3.5. | floydhub/theano | |
theano-0.9:py2 | Theano rel-0.8.2 + Keras 2.0.3 on Python2. | floydhub/theano | ||
Caffe | caffe | Caffe rc4 on Python3.5. | floydhub/caffe | |
caffe:py2 | Caffe rc4 on Python2. | floydhub/caffe | ||
Torch | torch | Torch 7 with Python 3 env. | floydhub/torch | |
torch:py2 | Torch 7 with Python 2 env. | floydhub/torch | ||
Chainer 1.23 | chainer-1.23 | Chainer 1.23.0 on Python 3. | floydhub/chainer | |
chainer-1.23:py2 | Chainer 1.23.0 on Python 2. | floydhub/chainer | ||
Chainer 2.0 | chainer-2.0 | Chainer 1.23.0 on Python 3. | floydhub/chainer | |
chainer-2.0:py2 | Chainer 1.23.0 on Python 2. | floydhub/chainer | ||
MxNet 1.0 | mxnet | MxNet 1.0.0 on Python 3.6. | floydhub/mxnet | |
mxnet:py2 | MxNet 1.0.0 on Python 2. | floydhub/mxnet |
@https://docs.floydhub.com/guides/environments/
版本问题---keras和tensorflow的版本对应关系的更多相关文章
- 版本问题---cuda和tensorflow的版本对应关系
cuda和tensorflow的版本有对应关系 https://tensorflow.google.cn/install/source#linux
- Win10上安装Keras 和 TensorFlow(GPU版本)
一. 安装环境 Windows 10 64bit 家庭版 GPU: GeForce GTX1070 Python: 3.5 CUDA: CUDA Toolkit 8.0 GA1 (Sept 2016 ...
- tensorflow各个版本的CUDA以及Cudnn版本对应关系
概述,需要注意以下几个问题: (1)NVIDIA的显卡驱动程序和CUDA完全是两个不同的概念哦!CUDA是NVIDIA推出的用于自家GPU的并行计算框架,也就是说CUDA只能在NVIDIA的GPU上运 ...
- 版本问题---Bazel与tensorflow的对应关系
源码安装tf的时候,会用到Bazel,版本不对应,后面会引起好多麻烦. echo "deb [arch=amd64] http://storage.googleapis.com/bazel- ...
- 【转】Ubuntu 16.04安装配置TensorFlow GPU版本
之前摸爬滚打总是各种坑,今天参考这篇文章终于解决了,甚是鸡冻\(≧▽≦)/,电脑不知道怎么的,安装不了16.04,就安装15.10再升级到16.04 requirements: Ubuntu 16.0 ...
- tensorflow不同版本安装与升级/降级
https://blog.csdn.net/junmuzi/article/details/78357371 首先,可以安装一个anaconda. 然后使用python的pip可以安装特定版本的ten ...
- 通过Anaconda在Ubuntu16.04上安装 TensorFlow(GPU版本)
一. 安装环境 Ubuntu16.04.3 LST GPU: GeForce GTX1070 Python: 3.5 CUDA Toolkit 8.0 GA1 (Sept 2016) cuDNN v6 ...
- tensorflow降低版本
tensorflow降低版本: pip install tensorflow==1.2.0 查看版本: import tensorflow as tf print(tf.__version__)
- Windows7 64bits下安装TensorFlow CPU版本(图文详解)
不多说,直接上干货! Installing TensorFlow on Windows的官网 https://www.tensorflow.org/install/install_windows 首先 ...
随机推荐
- 20165214 2018-2019-2 《网络对抗技术》Exp8 Web基础 Week11—12
<网络对抗技术>Exp8 Web基础 Week11-12 一.实验目标与内容 1.实践内容 (1).Web前端HTML 能正常安装.启停Apache.理解HTML,理解表单,理解GET与P ...
- C运算符优先级和结合性
C中运算符优先级和结合性一览表: 在上表中能总结出一下规律: (1)结合方向只有三个是从右往左,其余都是从左往右: (2)逗号运算符的优先级最低: (3)对于优先级,有一个普遍规律:算术运算符 > ...
- Logstash测试的时候,报Error occurred during initialization of VM,Could not reserve enough space for object heap
今天配置Logstash的时候,启动输入logstash ‐e 'input { stdin { } } output { stdout {} }'就开始报错了,Error occurred duri ...
- 【转】AXI_Lite 总线详解
目录: · 1.前言 · 2.AXI总线与ZYNQ的关系 · 3 AXI 总线和 AXI 接口以及 AXI 协议 · 3.1 AXI 总线概述 · 3.2 AXI 接口介绍 ·3.3 AXI 协议概述 ...
- Django中使用CORS实现跨域请求(转)
原文:https://blog.csdn.net/zizle_lin/article/details/81381322 跨域请求: 请求url包含协议.网址.端口,任何一种不同都是跨域请求. ...
- CF1190E Tokitsukaze and Explosion 二分、贪心、倍增、ST表
传送门 最小值最大考虑二分答案,不难发现当最小值\(mid\)确定之后,原点到所有直线的距离一定都是\(mid\)时才是最优的,也就是说这些直线一定都是\(x^2+y^2=mid^2\)的切线. 接下 ...
- 【题解】保安站岗[P2458]皇宫看守[LOJ10157][SDOI2006]
[题解]保安站岗[P2458]皇宫看守[LOJ10157][SDOI2006] 传送门:皇宫看守\([LOJ10157]\) 保安站岗 \([P2458]\) \([SDOI2006]\) [题目描述 ...
- 『7.5 NOIP模拟赛题解』
T1 Gift Description 人生赢家老王在网上认识了一个妹纸,然后妹纸的生日到了,为了表示自己的心 意,他决定送她礼物.可是她喜爱的东西特别多,然而他的钱数有限,因此他想 知道当他花一 ...
- 独立使用 ecj
ECJ 是 Eclipse Compiler for Java 的缩写,是 JavaTM 认可的 Java 编译工具(类似 javac).可以单独下载使用. 下载地址: http://mirrors. ...
- SQL Server SSIS中的变量使用表达式后,就无法更改其值了
在SQL Server SSIS中,我们可以为变量定义初始值和表达式,其实SSIS的变量定义为表达式后我们就无法更改变量的值了,我们来做如下实验: 首先我们在SSIS包中定义一个String类型的变量 ...