Sum of Different Primes
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 3684   Accepted: 2252

Description

A positive integer may be expressed as a sum of different prime numbers (primes), in one way or another. Given two positive integers n and k, you should count the number of ways to express n as a sum of k different primes. Here, two ways are considered to be the same if they sum up the same set of the primes. For example, 8 can be expressed as 3 + 5 and 5 + 3 but the are not distinguished.

When n and k are 24 and 3 respectively, the answer is two because there are two sets {2, 3, 19} and {2, 5, 17} whose sums are equal to 24. There are not other sets of three primes that sum up to 24. For n = 24 and k = 2, the answer is three, because there are three sets {5, 19}, {7, 17} and {11, 13}. For n = 2 and k = 1, the answer is one, because there is only one set {2} whose sum is 2. For n = 1 and k = 1, the answer is zero. As 1 is not a prime, you shouldn’t count {1}. For n = 4 and k = 2, the answer is zero, because there are no sets of two different primes whose sums are 4.

Your job is to write a program that reports the number of such ways for the given n and k.

Input

The input is a sequence of datasets followed by a line containing two zeros separated by a space. A dataset is a line containing two positive integers n and k separated by a space. You may assume that n ≤ 1120 and k ≤ 14.

Output

The output should be composed of lines, each corresponding to an input dataset. An output line should contain one non-negative integer indicating the number of the ways for n and k specified in the corresponding dataset. You may assume that it is less than 231.

Sample Input

24 3
24 2
2 1
1 1
4 2
18 3
17 1
17 3
17 4
100 5
1000 10
1120 14
0 0

Sample Output

2
3
1
0
0
2
1
0
1
55
200102899
2079324314

题意:

给出n,k问将n分解成k个素数有多少种分法。

分析:

首先使用素数筛筛选出素数。

设dp[i][j]:将j分解成i个素数的方案数,那么:dp[i][j]=dp[i-1][j-su[k]]。

for枚举所有素数

  for枚举1150->1所有的值

    for枚举方案14->1

最后读入n,k直接输出dp[k][n]即可。

AC code:

#include<cstdio>
#include<cstring>
using namespace std;
bool u[];
int su[];
int dp[][];
int psu[];
int num;
void olas()
{
num=;
memset(u,true,sizeof(u));
for(int i=;i<=;i++)
{
if(u[i]) su[num++]=i;
for(int j=;j<num;j++)
{
if(i*su[j]>) break;
u[i*su[j]]=false;
if(i%su[j]==) break;
}
}
psu[]=su[];
for(int i=;i<num;i++)
{
psu[i]=psu[i-]+su[i];
}
}
void pre()
{
dp[][]=;
for(int i=;i<num;i++)
{
for(int j=;j>=;j--)
{
if(j>=su[i])
{
for(int k=;k>=;k--)
{
dp[k][j]+=dp[k-][j-su[i]];
}
}
else break;
}
}
}
int main()
{
int n,k;
olas();
pre();
freopen("input.txt","r",stdin);
while(~scanf("%d%d",&n,&k)&&n&&k)
{
printf("%d\n",dp[k][n]);
}
return ;
}

POJ 3132 DP+素数筛的更多相关文章

  1. codeforces 822 D. My pretty girl Noora(dp+素数筛)

    题目链接:http://codeforces.com/contest/822/problem/D 题解:做这题首先要推倒一下f(x)假设第各个阶段分成d1,d2,d3...di组取任意一组来说,如果第 ...

  2. Codeforces 264B Good Sequences(DP+素数筛)

    题目链接:http://codeforces.com/problemset/problem/264/B 题目大意:给出n个单调递增的数,让你找出最长的好序列,好序列是一种单调递增的并且相邻元素的最大公 ...

  3. poj 2689 区间素数筛

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  4. codeforces 569C C. Primes or Palindromes?(素数筛+dp)

    题目链接: C. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes in ...

  5. 素数筛 poj 2689

    素数筛 #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; ...

  6. poj 3048 Max Factor(素数筛)

    这题就是先写个素数筛,存到prime里,之后遍历就好,取余,看是否等于0,如果等于0就更新,感觉自己说的不明白,引用下别人的话吧: 素数打表,找出20000之前的所有素数,存入prime数组,对于每个 ...

  7. POJ 3126 Prime Path (bfs+欧拉线性素数筛)

    Description The ministers of the cabinet were quite upset by the message from the Chief of Security ...

  8. Prime Path素数筛与BFS动态规划

    埃拉托斯特尼筛法(sieve of Eratosthenes ) 是古希腊数学家埃拉托斯特尼发明的计算素数的方法.对于求解不大于n的所有素数,我们先找出sqrt(n)内的所有素数p1到pk,其中k = ...

  9. Codeforces 385C - Bear and Prime Numbers(素数筛+前缀和+hashing)

    385C - Bear and Prime Numbers 思路:记录数组中1-1e7中每个数出现的次数,然后用素数筛看哪些能被素数整除,并加到记录该素数的数组中,然后1-1e7求一遍前缀和. 代码: ...

随机推荐

  1. tomcat的基本应用

    1.JVM基本介绍 JAVA编译型 ---> 编译 C 编译型---> linux --->编译一次 windows --->编译一次 macos ubuntu 跨平台 移值型 ...

  2. MongoDB常用数据库命令第三集

    show dbs 查看已经存在的数据库 use 数据库名 切换到指定的数据库(无论数据库是否存在 均可切换成功) db 查看当前数据库 db.getCollectionNames() 查看当前数据库下 ...

  3. nodejs实现简单爬虫

    nodejs结合cheerio实现简单爬虫 let cheerio = require("cheerio"), fs = require("fs"), util ...

  4. 分母为0的坑(float)

    分母不能为0 对于int 类型,如果分母为0,在程序运行时,会报错. 而对于float 类型,如果分母为0,则不会报错,而是会返回一个infinity(无穷大),也就是NAN. 因为除一个无穷小的数, ...

  5. Arbitrage POJ - 2240

    题目链接:https://vjudge.net/problem/POJ-2240 思路:判正环,Bellman-ford和SPFA,floyd都可以,有正环就可以套利. 这里用SPFA,就是个板子题吧 ...

  6. lf 前后端分离 (3) 中间建跨域

    一.关于中间建跨域 为了减少跨域代码冗余,采用中间件 from django.utils.deprecation import MiddlewareMixin class CorsMiddleware ...

  7. JS高阶---继承模式(借用构造函数继承+组合继承)

    (1)借用构造函数继承 案例如下: 验证: (2)组合继承 案例如下: 验证如下: 结果如右图所示 . .

  8. 201871010105-曹玉中《面向对象程序设计(java)》第七周学习总结

    201871010105-曹玉中<面向对象程序设计(java)>第七周学习总结 项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这 ...

  9. 201871010117 石欣钰《面向对象程序设计(Java)》第十二周学习总结

      内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 https://www.cnblogs.com/nwnu-daizh/p/ ...

  10. day30_8.9 操作系统与并发编程

    一.操作系统相关 1.手工操作 1946年第一台计算机诞生--20世纪50年代中期,计算机工作还在采用手工操作方式.此时还没有操作系统的概念. 这时候的计算机是由人为将穿孔的纸带装入输入机,控制台获取 ...